Unknown

Dataset Information

0

PET Imaging of PARP Expression Using 18F-Olaparib.


ABSTRACT: Poly(ADP-ribose) polymerase (PARP) inhibitors are increasingly being studied as cancer drugs, as single agents, or as a part of combination therapies. Imaging of PARP using a radiolabeled inhibitor has been proposed for patient selection, outcome prediction, dose optimization, genotoxic therapy evaluation, and target engagement imaging of novel PARP-targeting agents. Methods: Here, via the copper-mediated 18F-radiofluorination of aryl boronic esters, we accessed, for the first time (to our knowledge), the 18F-radiolabeled isotopolog of the Food and Drug Administration-approved PARP inhibitor olaparib. The use of the 18F-labeled equivalent of olaparib allows direct prediction of the distribution of olaparib, given its exact structural likeness to the native, nonradiolabeled drug. Results: 18F-olaparib was taken up selectively in vitro in PARP-1-expressing cells. Irradiation increased PARP-1 expression and 18F-olaparib uptake in a radiation-dose-dependent fashion. PET imaging in mice showed specific uptake of 18F-olaparib in tumors expressing PARP-1 (3.2% ± 0.36% of the injected dose per gram of tissue in PSN-1 xenografts), correlating linearly with PARP-1 expression. Two hours after irradiation of the tumor (10 Gy), uptake of 18F-olaparib increased by 70% (P = 0.025). Conclusion: Taken together, we show that 18F-olaparib has great potential for noninvasive tumor imaging and monitoring of radiation damage.

SUBMITTER: Wilson TC 

PROVIDER: S-EPMC6448459 | biostudies-literature |

REPOSITORIES: biostudies-literature

Similar Datasets

| S-EPMC6252111 | biostudies-literature
| S-EPMC6358511 | biostudies-literature
| S-EPMC7497465 | biostudies-literature
| S-EPMC8301305 | biostudies-literature
| S-EPMC8241750 | biostudies-literature
| S-EPMC9399069 | biostudies-literature
| S-EPMC7188736 | biostudies-literature
| S-EPMC7163454 | biostudies-literature
| S-EPMC7246165 | biostudies-literature
| S-EPMC10261398 | biostudies-literature