Unknown

Dataset Information

0

Magnetoelastic hybrid excitations in CeAuAl3.


ABSTRACT: Nearly a century of research has established the Born-Oppenheimer approximation as a cornerstone of condensed-matter systems, stating that the motion of the atomic nuclei and electrons may be treated separately. Interactions beyond the Born-Oppenheimer approximation are at the heart of magneto-elastic functionalities and instabilities. We report comprehensive neutron spectroscopy and ab initio phonon calculations of the coupling between phonons, CEF-split localized 4f electron states, and conduction electrons in the paramagnetic regime of [Formula: see text], an archetypal Kondo lattice compound. We identify two distinct magneto-elastic hybrid excitations that form even though all coupling constants are small. First, we find a CEF-phonon bound state reminiscent of the vibronic bound state (VBS) observed in other materials. However, in contrast to an abundance of optical phonons, so far believed to be essential for a VBS, the VBS in [Formula: see text] arises from a comparatively low density of states of acoustic phonons. Second, we find a pronounced anticrossing of the CEF excitations with acoustic phonons at zero magnetic field not observed before. Remarkably, both magneto-elastic excitations are well developed despite considerable damping of the CEFs that arises dominantly by the conduction electrons. Taking together the weak coupling with the simultaneous existence of a distinct VBS and anticrossing in the same material in the presence of damping suggests strongly that similarly well-developed magneto-elastic hybrid excitations must be abundant in a wide range of materials. In turn, our study of the excitation spectra of [Formula: see text] identifies a tractable point of reference in the search for magneto-elastic functionalities and instabilities.

SUBMITTER: Cermak P 

PROVIDER: S-EPMC6452737 | biostudies-literature | 2019 Apr

REPOSITORIES: biostudies-literature

altmetric image

Publications

Magnetoelastic hybrid excitations in CeAuAl<sub>3</sub>.

Čermák Petr P   Schneidewind Astrid A   Liu Benqiong B   Koza Michael Marek MM   Franz Christian C   Schönmann Rudolf R   Sobolev Oleg O   Pfleiderer Christian C  

Proceedings of the National Academy of Sciences of the United States of America 20190320 14


Nearly a century of research has established the Born-Oppenheimer approximation as a cornerstone of condensed-matter systems, stating that the motion of the atomic nuclei and electrons may be treated separately. Interactions beyond the Born-Oppenheimer approximation are at the heart of magneto-elastic functionalities and instabilities. We report comprehensive neutron spectroscopy and ab initio phonon calculations of the coupling between phonons, CEF-split localized 4f electron states, and conduc  ...[more]

Similar Datasets

| S-EPMC5524652 | biostudies-literature
| S-EPMC4517243 | biostudies-literature
| S-EPMC6377459 | biostudies-literature
| S-EPMC7466411 | biostudies-literature
| S-EPMC7686958 | biostudies-literature
| S-EPMC2851794 | biostudies-literature
| S-EPMC7821893 | biostudies-literature
| S-EPMC4466712 | biostudies-literature
| S-EPMC10462379 | biostudies-literature
| S-EPMC6538846 | biostudies-literature