Directed acyclic graphs: An under-utilized tool for child maltreatment research.
Ontology highlight
ABSTRACT: BACKGROUND:Child maltreatment research involves modeling complex relationships between multiple interrelated variables. Directed acyclic graphs (DAGs) are one tool child maltreatment researchers can use to think through relationships among the variables operative in a causal research question and to make decisions about the optimal analytic strategy to minimize potential sources of bias. OBJECTIVE:The purpose of this paper is to highlight the utility of DAGs for child maltreatment research and to provide a practical resource to facilitate and support the use of DAGs in child maltreatment research. RESULTS:We first provide an overview of DAG terminology and concepts relevant to child maltreatment research. We describe DAG construction and define specific types of variables within the context of DAGs including confounders, mediators, and colliders, detailing the manner in which each type of variable can be used to inform study design and analysis. We then describe four specific scenarios in which DAGs may yield valuable insights for child maltreatment research: (1) identifying covariates to include in multivariable models to adjust for confounding; (2) identifying unintended effects of adjusting for a mediator; (3) identifying unintended effects of adjusting for multiple types of maltreatment; and (4) identifying potential selection bias in data specific to children involved in the child welfare system. CONCLUSIONS:Overall, DAGs have the potential to help strengthen and advance the child maltreatment research and practice agenda by increasing transparency about assumptions, illuminating potential sources of bias, and enhancing the interpretability of results for translation to evidence-based practice.
SUBMITTER: Austin AE
PROVIDER: S-EPMC6452862 | biostudies-literature | 2019 May
REPOSITORIES: biostudies-literature
ACCESS DATA