Unknown

Dataset Information

0

Surface Segregation in CuNi Nanoparticle Catalysts During CO2 Hydrogenation: The Role of CO in the Reactant Mixture.


ABSTRACT: Surface segregation and restructuring in size-selected CuNi nanoparticles were investigated via near-ambient pressure X-ray photoelectron spectroscopy (NAP-XPS) at various temperatures in different gas environments. Particularly in focus were structural and morphological changes occurring under CO2 hydrogenation conditions in the presence of carbon monoxide (CO) in the reactant gas mixture. Nickel surface segregation was observed when only CO was present as adsorbate. The segregation trend is inverted in a reaction gas mixture consisting of CO2, H2, and CO, resulting in an increase of copper concentration on the surface. Density functional theory calculations attributed the inversion of the segregation trend to the formation of a stable intermediate on the nanocatalyst surface (CH3O) in the CO-containing reactant mixture, which modifies the nickel segregation energy, thus driving copper to the surface. The promoting role of CO for the synthesis of methanol was demonstrated by catalytic characterization measurements of silica-supported CuNi NPs in a fixed-bed reactor, revealing high methanol selectivity (over 85%) at moderate pressures (20 bar). The results underline the important role of intermediate reaction species in determining the surface composition of bimetallic nanocatalysts and help understand the effect of CO cofeed on the properties of CO2 hydrogenation catalysts.

SUBMITTER: Zegkinoglou I 

PROVIDER: S-EPMC6453022 | biostudies-literature | 2019 Apr

REPOSITORIES: biostudies-literature

altmetric image

Publications

Surface Segregation in CuNi Nanoparticle Catalysts During CO<sub>2</sub> Hydrogenation: The Role of CO in the Reactant Mixture.

Zegkinoglou Ioannis I   Pielsticker Lukas L   Han Zhong-Kang ZK   Divins Nuria J NJ   Kordus David D   Chen Yen-Ting YT   Escudero Carlos C   Pérez-Dieste Virginia V   Zhu Beien B   Gao Yi Y   Cuenya Beatriz Roldan BR  

The journal of physical chemistry. C, Nanomaterials and interfaces 20190115 13


Surface segregation and restructuring in size-selected CuNi nanoparticles were investigated via near-ambient pressure X-ray photoelectron spectroscopy (NAP-XPS) at various temperatures in different gas environments. Particularly in focus were structural and morphological changes occurring under CO<sub>2</sub> hydrogenation conditions in the presence of carbon monoxide (CO) in the reactant gas mixture. Nickel surface segregation was observed when only CO was present as adsorbate. The segregation  ...[more]

Similar Datasets

| S-EPMC10397205 | biostudies-literature
| S-EPMC6185915 | biostudies-literature
| S-EPMC5707511 | biostudies-literature
| S-EPMC7756314 | biostudies-literature
| S-EPMC6644744 | biostudies-literature
| S-EPMC7830109 | biostudies-literature
| S-EPMC10787759 | biostudies-literature
| S-EPMC10708108 | biostudies-literature
| S-EPMC8010022 | biostudies-literature
| S-EPMC7042257 | biostudies-literature