Project description:BackgroundNon-invasive positive pressure ventilation (NPPV) has been used to treat respiratory distress due to acute cardiogenic pulmonary oedema (ACPE). We performed a systematic review and meta-analysis update on NPPV for adults presenting with ACPE.ObjectivesTo evaluate the safety and effectiveness of NPPV compared to standard medical care (SMC) for adults with ACPE. The primary outcome was hospital mortality. Important secondary outcomes were endotracheal intubation, treatment intolerance, hospital and intensive care unit length of stay, rates of acute myocardial infarction, and adverse event rates.Search methodsWe searched CENTRAL (CRS Web, 20 September 2018), MEDLINE (Ovid, 1946 to 19 September 2018), Embase (Ovid, 1974 to 19 September 2018), CINAHL Plus (EBSCO, 1937 to 19 September 2018), LILACS, WHO ICTRP, and clinicaltrials.gov. We also reviewed reference lists of included studies. We applied no language restrictions.Selection criteriaWe included blinded or unblinded randomised controlled trials in adults with ACPE. Participants had to be randomised to NPPV (continuous positive airway pressure (CPAP) or bilevel NPPV) plus standard medical care (SMC) compared with SMC alone.Data collection and analysisTwo review authors independently screened and selected articles for inclusion. We extracted data with a standardised data collection form. We evaluated the risks of bias of each study using the Cochrane 'Risk of bias' tool. We assessed evidence quality for each outcome using the GRADE recommendations.Main resultsWe included 24 studies (2664 participants) of adult participants (older than 18 years of age) with respiratory distress due to ACPE, not requiring immediate mechanical ventilation. People with ACPE presented either to an Emergency Department or were inpatients. ACPE treatment was provided in an intensive care or Emergency Department setting. There was a median follow-up of 13 days for hospital mortality, one day for endotracheal intubation, and three days for acute myocardial infarction. Compared with SMC, NPPV may reduce hospital mortality (risk ratio (RR) 0.65, 95% confidence interval (CI) 0.51 to 0.82; participants = 2484; studies = 21; I2 = 6%; low quality of evidence) with a number needed to treat for an additional beneficial outcome (NNTB) of 17 (NNTB 12 to 32). NPPV probably reduces endotracheal intubation rates (RR 0.49, 95% CI 0.38 to 0.62; participants = 2449; studies = 20; I2 = 0%; moderate quality of evidence) with a NNTB of 13 (NNTB 11 to 18). There is probably little or no difference in acute myocardial infarction (AMI) incidence with NPPV compared to SMC for ACPE (RR 1.03, 95% CI 0.91 to 1.16; participants = 1313; studies = 5; I2 = 0%; moderate quality of evidence). We are uncertain as to whether NPPV increases hospital length of stay (mean difference (MD) -0.31 days, 95% CI -1.23 to 0.61; participants = 1714; studies = 11; I2 = 55%; very low quality of evidence). Adverse events were generally similar between NPPV and SMC groups, but evidence was of low quality.Authors' conclusionsOur review provides support for continued clinical application of NPPV for ACPE, to improve outcomes such as hospital mortality and intubation rates. NPPV is a safe intervention with similar adverse event rates to SMC alone. Additional research is needed to determine if specific subgroups of people with ACPE have greater benefit of NPPV compared to SMC. Future research should explore the benefit of NPPV for ACPE patients with hypercapnia.
Project description:BackgroundPressure support (PS) as a spontaneous breathing trial (SBT) was considered inferior to continuous positive airway pressure (CPAP) and T-piece because PS underestimated post-extubation work of breathing in physiologic studies. We aimed to compare PS and CPAP as SBT methods for assessing clinical outcomes in children.MethodsThis was an open label randomized non-inferiority trial conducted between December 2019 and August 2021 among children aged 1 month to 12 years deemed ready for weaning after at least 48 h of invasive ventilation in PICU. Children were randomized to undergo a 2-h SBT with PS of 8 cm H2O in addition to PEEP 5-6 cm H2O or CPAP (5-6 cm H2O). The primary outcome was successful liberation from invasive ventilation for 72 h after first SBT. Secondary outcomes included first SBT pass rate, need for post-extubation respiratory support (high flow oxygen and/or non-invasive ventilation), and length of PICU stay.FindingsOf the 247 enrolled children, 244 completed the trial (121 in PS and 123 in CPAP group). Median (IQR) age was 24 (9, 84) months. Median (IQR) duration of invasive ventilation before randomization was 4.5 (3, 6.5) days. Successful liberation from invasive ventilation after first SBT occurred in 97 (80.2%) children in PS and 93 (75.6%) children in CPAP group [difference 4.6; 95% CI (-5.8, 15); p = 0.39]. First SBT pass rate between PS and CPAP [111 (91.7%) versus 105 (85.4%); difference 6.3; 95% CI (-1.6, 14.3); p = 0.12] was similar. Need for post-extubation respiratory support [52 (43%) versus 49 (40%)], rate of reintubation within 72 h [14 (11.6%) versus 12 (9.8%)] and median (IQR) length of PICU stay [9 (6, 15) versus 8 (5.5, 13) days] were comparable. Four (1.6%) children, all in CPAP group had unfavourable outcome (1 died, 3 discontinued care).InterpretationIn invasively ventilated children, 2-h SBT with pressure support was non-inferior to CPAP in predicting successful liberation from invasive ventilation.FundingNone.
Project description:Goal: COSMIC Medical, a Vancouver-based open-source volunteer initiative, has designed an accessible, affordable, and aerosol-confining non-invasive positive-pressure ventilator (NIPPV) device, known as the COSMIC Bubble Helmet (CBH). This device is intended for COVID-19 patients with mild-to-moderate acute respiratory distress syndrome. System Design: CBH is composed of thermoplastic polyurethane, which creates a flexible neck seal and transparent hood. This device can be connected to wall oxygen, NIPPVs including Continuous Positive Airway Pressure and Bi-level Positive Airway Pressure, and mechanical ventilators. Discussion: Justification of CBH design components relied on several factors, predominantly the safety and comfort of patients and healthcare providers. Conclusion: CBH has implications within and outside of the pandemic, as an alternative to invasive mechanical ventilation methods. We have experimentally verified that CBH is effective in minimizing aerosolization risks and performs at specified clinical requirements.
Project description:The real-world evidence has been sparse on the impact of non-invasive positive pressure ventilation (NPPV) on the outcomes in acute decompensated heart failure (ADHF) patients. We aim to explore this issue in the prospective multicenter WET-HF registry. Among 3927 patients (77 (67-84) years, male 60%), the NPPV was used in 775 patients (19.7%). The association of NPPV use with in-hospital outcome and length of hospital stay (LOS) was examined by two methods, propensity score (PS) matching and multivariable analysis with adjustment for PS. In these analyses the NPPV group exhibited a lower endotracheal intubation (ETI) rate and a comparable in-hospital mortality, but longer LOS compared to the non-NPPV group. In the stratified analysis, the NPPV group exhibited a significantly lower ETI rate in patients with ischemic etiology, systolic blood pressure (sBP) > 140 mmHg and the Controlling Nutritional Status (CONUT) score ≤ 3, indicating better nutritional status. On the contrary, NPPV use was associated with longer LOS in patients with non-ischemic etiology, sBP < 100 mmHg and CONUT score > 3. In conclusion, NPPV use was associated with a lower incidence of ETI. Particularly, patients with ischemic etiology, high sBP, and better nutritional status might benefit from NPPV use.
Project description:This review will focus on non-invasive ventilation (NIV) and continuous positive airway pressure (CPAP) therapy in children with obstructive sleep apnea (OSA) due to obesity and underlying syndromes. These children have a high prevalence of OSA and residual OSA after adenotonsillectomy. Therefore, a high proportion of these children are treated with CPAP or NIV. This review will focus on treatment selection tools and will subsequently cover specific issues on CPAP treatment in obese and syndromic children with a major focus on Down syndrome.
Project description:IntroductionThe effectiveness of non-invasive mechanical ventilation (NIV) in the management of COPD patients suffering from acute respiratory failure (ARF) as a consequence of exacerbation of the disease, is well established. However, data on long-term outcomes and their predictors, including the individual response to NIV, are scarce.ObjectivesTo investigate predictors for short- and long-term mortality in this study population.MethodsA retrospective cohort study was performed including all patients admitted to the Medium Respiratory Care Unit of Maastricht University Medical Center in Maastricht, the Netherlands, with hospitalized exacerbation of COPD (H-ECOPD) with ARF requiring NIV for the first time between January 2009 and December 2011. An extensive number of potential predictors of outcomes, including the response to NIV, were determined on admission and during hospitalization. Univariate and multivariate logistic regression was used for statistical analysis.ResultsSeventy-eight consecutive patients with moderate to severe COPD (mean age 71.0 ± 10.7 years; 48.7% males) were included; In-hospital, 1-year and 2-year mortality rates were 14.1%, 43.6% and 56.4%, respectively. Independent risk factors for 2-year mortality were: advanced age (odds ratio(OR) 1.025; confidence interval (CI) 1.002-1.049; P = 0.037), prolonged NIV use more than 8 days (OR:1.054;CI:1.006-1.104; P = 0.027) and no successful response to NIV (OR:2.392;CI:1.297-4.413; P = 0.005).ConclusionPatients with an H-ECOPD requiring NIV for the first time, constitute a severely ill patient group with high in-hospital and 2-year mortality. This study identified advanced age, NIV use more than 8 days and unsuccessful response to NIV as clinical important independent predictors for long-term mortality.
Project description:A 90-year-old woman underwent laparoscopic exploratory laparotomy for evaluation of suspected mesenteric ischemia. She was promptly extubated postoperatively and transferred to the intensive care unit, where on the first postoperative day she developed hypoxemia necessitating initiation of noninvasive ventilation (NIV) with bilevel positive airway pressure (BiPAP). After 8 hours of BiPAP, she was noted to have swelling, erythema and tenderness in the right preauricular area. Ultrasound evaluation demonstrated an enlarged right parotid gland. With discontinuation of BiPAP and supportive measures, parotitis resolved within 6 days. The mechanism of NIV-induced acute parotitis likely involves transmission of positive pressure to the oral cavity, causing obstruction to salivary flow within the parotid (Stensen) duct. Conditions that increase salivary viscosity and promote salivary stasis, such as advanced age, dehydration, and absence of salivary gland stimulation due to restriction of oral intake, may render patients more susceptible to this complication. As NIV will continue to be a commonly-used modality for the treatment of acute respiratory failure, clinicians should be aware of this phenomenon.
Project description:Drug-induced lung injury (DLI) has become more common because of the increasing number of therapeutic agents in use. Mesalazine, also known as 5-aminosalicylic acid (5-ASA), is one of the key drugs for the treatment of ulcerative colitis (UC). Although mesalazine-induced lung injury has been previously reported, few cases have included severe respiratory failure. In this report, we present a case of mesalazine-induced lung injury with severe respiratory failure, which was improved by discontinuation of mesalazine and introduction of corticosteroid therapy and ventilation support with non-invasive positive pressure ventilation (NPPV). We also review the previous literature on mesalazine-induced lung injury.
Project description:High-pressure non-invasive positive pressure ventilation (NPPV) is a new strategy targeted at maximally reducing arterial carbon dioxide. However, high inspiratory positive airway pressure (IPAP) might cause respiratory adverse events likely to diminish the benefit of NPPV. In the setting of ventilatory support, monitoring NPPV efficacy and resolving problems promptly are critical. This study assessed the treatment effect of high and low-pressure NPPV in chronic hypercapnic COPD using home ventilator with built-in software. In this pilot study, we investigated 34 patients using NPPV for 3 months. 13 patients used high-pressure ventilation and 21 patients used low-pressure ventilation. The primary outcome was daytime partial pressure of arterial blood carbon dioxide (PaCO2). There were no between-group differences in daytime PaCO2 and FEV1, but a trend favouring high-pressure NPPV was observed. Significant between-group differences were found in the transition dyspnoea index (TDI) (high-pressure, 1.69?±?1.75, versus low-pressure, -0.04?±?2.71, p?=?0.044). No differences were found in usage time, leakage, health-related quality of life, spirometry, or 6-minute walk test. High-pressure NPPV with built-in software monitoring in patients with chronic hypercapnic COPD is associated with improvement in TDI scores and a positive trend in favour of high-pressure NPPV for improving PaCO2 is observed.
Project description:We aimed to investigate whether metabolomic analysis can discriminate acute respiratory failure due to COPD exacerbation from respiratory failure due to heart failure and pneumonia. Since COPD exacerbation is often overdiagnosed, we focused on those COPD exacerbations that were severe enough to require noninvasive mechanical ventilation. We enrolled stable COPD subjects and patients with acute respiratory failure requiring noninvasive mechanical ventilation due to COPD, heart failure, and pneumonia. We excluded subjects with history of both COPD and heart failure and patients with obstructive sleep apnea and obstructive lung disease other than COPD. We performed metabolomics analysis using NMR. We constructed partial least squares discriminant analysis (PLS-DA) models to distinguish metabolic profiles. Serum (p=0.001, R2?=?0.397, Q2?=?0.058) and urine metabolic profiles (p < 0.001, R2?=?0.419, Q2?=?0.142) were significantly different between the four diagnosis groups by PLS-DA. After excluding stable COPD patients, the metabolomes of the various respiratory failure groups did not cluster separately in serum (p=0.2, R2?=?0.631, Q2?=?0.246) or urine (p=0.065, R2?=?0.602, Q2?=?-0.134). However, several metabolites in the serum were reduced in patients with COPD exacerbation and pneumonia. We did not find a metabolic profile unique to COPD exacerbation, but we were able to clearly and reliably distinguish stable COPD patients from patients with respiratory failure in both serum and urine.