Unknown

Dataset Information

0

Tropical forest conversion to rubber plantation affects soil micro- & mesofaunal community & diversity.


ABSTRACT: Tropical rainforests play important roles in carbon sequestration and are hot spots for biodiversity. Tropical forests are being replaced by rubber (Hevea brasiliensis) plantations, causing widespread concern of a crash in biodiversity. Such changes in aboveground vegetation might have stronger impacts on belowground biodiversity. We studied tropical rainforest fragments and derived rubber plantations at a network of sites in Xishuangbanna, China, hypothesizing a major decrease in diversity with conversion to plantations. We used metabarcoding of the 18S rRNA gene and recovered 2313 OTUs, with a total of 449 OTUs shared between the two land-use types. The most abundant phyla detected were Annelida (66.4% reads) followed by arthropods (15.5% reads) and nematodes (8.9% reads). Of these, only annelids were significantly more abundant in rubber plantation. Taken together, ?- and ?-diversity were significantly higher in forest than rubber plantation. Soil pH and spatial distance explained a significant portion of the variability in phylogenetic community structure for both land-use types. Community assembly was primarily influenced by stochastic processes. Overall it appears that forest replacement by rubber plantation results in an overall loss and extensive replacement of soil micro- and mesofaunal biodiversity, which should be regarded as an additional aspect of the impact of forest conversion.

SUBMITTER: Singh D 

PROVIDER: S-EPMC6458137 | biostudies-literature | 2019 Apr

REPOSITORIES: biostudies-literature

Similar Datasets

| S-EPMC7161737 | biostudies-literature
| S-EPMC8698287 | biostudies-literature
| S-EPMC4633048 | biostudies-literature
| PRJNA615753 | ENA
| S-EPMC5145857 | biostudies-literature
| S-EPMC6789016 | biostudies-literature
| S-EPMC91543 | biostudies-literature
| S-EPMC8328430 | biostudies-literature
| S-EPMC4580575 | biostudies-literature
| S-EPMC4656839 | biostudies-literature