Unknown

Dataset Information

0

Hippocampal and cortical communication around micro-arousals in slow-wave sleep.


ABSTRACT: Sleep plays a crucial role in the regulation of body homeostasis and rhythmicity in mammals. Recently, a specific component of the sleep structure has been proposed as part of its homeostatic mechanism, named micro-arousal. Here, we studied the unique progression of the dynamic behavior of cortical and hippocampal local field potentials (LFPs) during slow-wave sleep-related to motor-bursts (micro-arousals) in mice. Our main results comprised: (i) an abrupt drop in hippocampal LFP amplitude preceding micro-arousals which persisted until the end of motor-bursts (we defined as t interval, around 4s) and a similar, but delayed amplitude reduction in cortical (S1/M1) LFP activity occurring at micro-arousal onset; (ii) two abrupt frequency jumps in hippocampal LFP activity: from Theta (6-12 Hz) to Delta (2-4 Hz), also t seconds before the micro-arousal onset, and followed by another frequency jump from Delta to Theta range (5-7 Hz), now occurring at micro-arousal onset; (iii) a pattern of cortico-hippocampal frequency communication precedes micro-arousals: the analysis between hippocampal and cortical LFP fluctuations reveal high coherence during ? interval in a broader frequency band (2-12 Hz), while at a lower frequency band (0.5-2 Hz) the coherence reaches its maximum after the onset of micro-arousals. In conclusion, these novel findings indicate that oscillatory dynamics pattern of cortical and hippocampal LFPs preceding micro-arousals could be part of the regulatory processes in sleep architecture.

SUBMITTER: Dos Santos Lima GZ 

PROVIDER: S-EPMC6458146 | biostudies-literature | 2019 Apr

REPOSITORIES: biostudies-literature

altmetric image

Publications


Sleep plays a crucial role in the regulation of body homeostasis and rhythmicity in mammals. Recently, a specific component of the sleep structure has been proposed as part of its homeostatic mechanism, named micro-arousal. Here, we studied the unique progression of the dynamic behavior of cortical and hippocampal local field potentials (LFPs) during slow-wave sleep-related to motor-bursts (micro-arousals) in mice. Our main results comprised: (i) an abrupt drop in hippocampal LFP amplitude prece  ...[more]

Similar Datasets

| S-EPMC5098641 | biostudies-literature
| S-EPMC4702189 | biostudies-literature
| S-EPMC7007963 | biostudies-literature
| S-EPMC6608509 | biostudies-literature
| S-EPMC4654990 | biostudies-literature
| S-EPMC1803030 | biostudies-literature
| S-EPMC5084685 | biostudies-literature
| S-EPMC5423360 | biostudies-literature
| S-EPMC6559175 | biostudies-literature
| S-EPMC3319559 | biostudies-literature