Unknown

Dataset Information

0

Dhh1 promotes autophagy-related protein translation during nitrogen starvation.


ABSTRACT: Macroautophagy (hereafter autophagy) is a well-conserved cellular process through which cytoplasmic components are delivered to the vacuole/lysosome for degradation and recycling. Studies have revealed the molecular mechanism of transcriptional regulation of autophagy-related (ATG) genes upon nutrient deprivation. However, little is known about their translational regulation. Here, we found that Dhh1, a DExD/H-box RNA helicase, is required for efficient translation of Atg1 and Atg13, two proteins essential for autophagy induction. Dhh1 directly associates with ATG1 and ATG13 mRNAs under nitrogen-starvation conditions. The structured regions shortly after the start codons of the two ATG mRNAs are necessary for their translational regulation by Dhh1. Both the RNA-binding ability and helicase activity of Dhh1 are indispensable to promote Atg1 translation and autophagy. Moreover, eukaryotic translation initiation factor 4E (EIF4E)-associated protein 1 (Eap1), a target of rapamycin (TOR)-regulated EIF4E binding protein, physically interacts with Dhh1 after nitrogen starvation and facilitates the translation of Atg1 and Atg13. These results suggest a model for how some ATG genes bypass the general translational suppression that occurs during nitrogen starvation to maintain a proper level of autophagy.

SUBMITTER: Liu X 

PROVIDER: S-EPMC6459490 | biostudies-literature | 2019 Apr

REPOSITORIES: biostudies-literature

altmetric image

Publications

Dhh1 promotes autophagy-related protein translation during nitrogen starvation.

Liu Xu X   Yao Zhiyuan Z   Jin Meiyan M   Namkoong Sim S   Yin Zhangyuan Z   Lee Jun Hee JH   Klionsky Daniel J DJ  

PLoS biology 20190411 4


Macroautophagy (hereafter autophagy) is a well-conserved cellular process through which cytoplasmic components are delivered to the vacuole/lysosome for degradation and recycling. Studies have revealed the molecular mechanism of transcriptional regulation of autophagy-related (ATG) genes upon nutrient deprivation. However, little is known about their translational regulation. Here, we found that Dhh1, a DExD/H-box RNA helicase, is required for efficient translation of Atg1 and Atg13, two protein  ...[more]

Similar Datasets

| S-EPMC6951345 | biostudies-literature
| S-EPMC6338489 | biostudies-literature
| S-EPMC8354615 | biostudies-literature
| S-EPMC7782722 | biostudies-literature
| S-EPMC9851245 | biostudies-literature
| S-EPMC4337068 | biostudies-literature
| S-EPMC3373615 | biostudies-literature
| S-EPMC1948951 | biostudies-literature
| S-EPMC9348796 | biostudies-literature
| S-EPMC5079677 | biostudies-literature