ABSTRACT: BACKGROUND:Reverse transcription quantitative PCR (RT-qPCR) is widely used for gene expression analysis in various organisms. Its accuracy largely relies on the stability of reference genes, making reference gene selection a vital step in RT-qPCR experiments. However, previous studies in mollusks only focused on the reference genes widely used in vertebrates. RESULTS:In this study, we conducted the transcriptome-wide identification of reference genes in the bivalve mollusk Mizuhopecten yessoensis based on 60 transcriptomes covering early development, adult tissues and gonadal development. A total of 964, 1210 and 2097 candidate reference genes were identified, respectively, resulting in a core set of 568 genes. Functional enrichment analysis showed that these genes are significantly overrepresented in Gene Ontology (GO) terms or Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways related to ribosomes, energy production, etc. Six genes (RS23, EF1A, NDUS4, SELR1, EIF3F, and OLA1) were selected from the candidate genes for RT-qPCR validation, together with 6 commonly used reference genes (ACT, CYTC, HEL, EF1B, GAPDH and RPL16). Stability analyses using geNorm, NormFinder and the comparative delta-Ct method revealed that the new candidate reference genes are more stable than the traditionally used genes, and ACT and CYTC are not recommended under either of the three circumstances. There was a significant correlation between the Ct of RT-qPCR and the log2(TPM) of RNA-Seq data (Ct?=?-?0.94 log2(TPM)?+?29.67, R2?=?0.73), making it easy to estimate the Ct values from transcriptome data prior to RT-qPCR experiments. CONCLUSION:Our study represents the first transcriptome-wide identification of reference genes for early development, adult tissues, and gonadal development in the Yesso scallop and will benefit gene expression studies in other bivalve mollusks.