Project description:BackgroundZinc plays a vital antioxidant role in human metabolism. Recent studies have demonstrated a correlation between noise-induced hearing loss (NIHL) and oxidative injury; however, no investigation has focused specifically on the subgroup of NIHL associated tinnitus patients. We aimed to evaluate the effectiveness of zinc supplementation in treating NIHL associated tinnitus.MethodsTwenty patients with tinnitus and a typical NIHL audiogram (38 ears) were included in this study. Another 20 healthy subjects were used as the control group. A full medical history assessment was performed, and each subject underwent an otoscopic examination, basic audiologic evaluation, distortion product otoacoustic emissions (DPOAEs), tinnitus-match testing, Tinnitus Handicap Inventory (THI) and serum zinc level analyses. After 2 months of treatment with zinc, all tests were repeated.ResultsThere was a significant difference between pretreatment and post-treatment within the tinnitus group (73.6 vs. 84.6 μg/dl). The pre- and post-treatment difference in serum zinc was significantly higher in the young group (≦50 years) compared to the old group (19.4 ± 11.4 vs. 2.6 ± 9.2 μg/dl, respectively; p = 0.002). There were no statistically significant differences in hearing thresholds, speech reception thresholds, or tinnitus frequency and loudness results before and after treatment. In addition, 17 patients (85%) showed statistically significant improvement of THI-total scores post-treatment, from 38.3 to 30 (p = 0.024).ConclusionsZinc oral supplementation elevated serum zinc levels, especially in younger patients. THI scores improved significantly following zinc treatment in patients with NIHL associated tinnitus. However, no improvements in objective hearing parameters were observed.
Project description:Despite the body of research into Zn for human and animal health and productivity, very little work has been done to discern whether this benefit is exerted solely on the host organism, or whether there is some effect of dietary Zn upon the gastrointestinal microbiota, particularly in ruminants. We hypothesized that (i) supplementation with Zn would alter the rumen bacterial community in yearling rams, but that (ii) supplementation with either inorganically sourced ZnSO4, or a chelated Zn AA complex, which was more bioavailable, would affect the rumen bacterial community differently. Sixteen purebred Targhee yearling rams were utilized in an 84-d completely randomized design, and allocated to one of three pelleted dietary treatments: control diet without fortified Zn (~1 × NRC), a diet fortified with a Zn AA complex (~2 × NRC), and a diet fortified with ZnSO4 (~2 × NRC). Rumen bacterial community was assessed using Illumina MiSeq of the V4 to V6 region of the 16S rRNA gene. One hundred and eleven OTUs were found with > 1% abundance across all samples. The genera Prevotella, Solobacterium, Ruminococcus, Butyrivibrio, Olsenella, Atopobium, and the candidate genus Saccharimonas were abundant in all samples. Total rumen bacterial evenness and diversity in rams were reduced by supplementation with a Zn AA complex, but not in rams supplemented with an equal concentration of ZnSO4, likely due to differences in bioavailability between organic and inorganically sourced supplement formulations. A number of bacterial genera were altered by Zn supplementation, but only the phylum Tenericutes was significantly reduced by ZnSO4 supplementation, suggesting that either Zn supplementation formulation could be utilized without causing a high-level shift in the rumen bacterial community which could have negative consequences for digestion and animal health.
Project description:The study aimed at determining the effect of different zinc (Zn) supplementation forms on Zn accumulation, activities of Zn-containing enzymes, gene expression of metallothionein (MT), and Zn transporters in piglets. Eighteen piglets were randomly divided into three groups: (a) a basal diet supplemented with 150 mg/kg Zn from Zn methionine (Zn-Met) in the feed (Zn-Met group), (b) a basal diet supplemented with 150 mg/kg Zn from Zn sulfate (ZnSO4) in the feed (ZnSO4, feed group), and (c) a basal diet supplemented with the same dose of Zn as in ZnSO4,feed group but in water (ZnSO4, water group). The results showed that Zn-Met added in feed and ZnSO4 dissolved in drinking water significantly improved (p < 0.05) the Zn concentration in liver and jejunum and the apparent digestibility of Zn in comparison with the ZnSO4 added in feed. In addition, dietary Zn supplementation as Zn-Met significantly increased (p < 0.05) the activity of alkaline phosphatase (AKP) in the jejunum of piglets in comparison with the ZnSO4, feed group. Furthermore, the Zn-Met and ZnSO4, water groups showed an improved total superoxide dismutase activity (T-SOD) in the ileum as compared to the ZnSO4, feed group. Meanwhile, the qPCR and western blot results showed that Zn-Met and ZnSO4 dissolved in drinking water increased the expression of MT in the jejunum in comparison with the ZnSO4 added in the piglets' feed. However, different Zn supplementation forms had no effect on the mRNA expressions of Zip4 and ZnT1 transporters. In conclusion, Zn-Met added in feed and ZnSO4 dissolved in drinking water had higher bioavailability in piglets.
Project description:In the present study, we studied the effect of dietray zinc (Zn) supplementation on the transcriptome profile of lactating ewes. The main objective was to evaluate the effect of Zn-supplementation on the overall transcriptome and the altered pathways and biological processes in lactating ewes. A previously custom-designed oligo microarray platform (GPL20576) was used to profile the transcriptome of 15 ewes at two time points [T0 (before supplementation) and T40 (after 40-days supplementation period; n = 30). The Isolated and purified total RNAs were individually hybridized to the custom (4x44k) DNA microarray. The comparison of control and treated animal transcriptomes revealed a large set of differentially expressed genes. Functional analysis showed several pathways and biological processes that have been altered following Zn-supplementation to the diet.
Project description:Assessment of zinc status remains a challenge largely because serum/plasma zinc may not accurately reflect an individual's zinc status. The comet assay, a sensitive method capable of detecting intracellular DNA strand breaks, may serve as a functional biomarker of zinc status. We hypothesized that effects of zinc supplementation on intracellular DNA damage could be assessed from samples collected in field studies in Ethiopia using the comet assay. Forty women, from villages where reported consumption of meat was less than once per month and phytate levels were high, received 20 mg zinc as zinc sulfate or placebo daily for 17 days in a randomized placebo-controlled trial. Plasma zinc concentrations were determined by inductively coupled plasma mass spectrometry. Cells from whole blood at the baseline and end point of the study were embedded in agarose, electrophoresed, and stained before being scored by an investigator blinded to the treatments. Although zinc supplementation did not significantly affect plasma zinc, mean (± SEM) comet tail moment measurement of supplemented women decreased from 39.7 ± 2.7 to 30.0 ± 1.8 (P< .005), indicating a decrease in DNA strand breaks in zinc-supplemented individuals. These findings demonstrated that the comet assay could be used as a functional assay to assess the effects of zinc supplementation on DNA integrity in samples collected in a field setting where food sources of bioavailable zinc are limited. Furthermore, the comet assay was sufficiently sensitive to detect changes in zinc status as a result of supplementation despite no significant changes in plasma zinc.
Project description:Zinc plays an important physiological role in the entire body, especially in the immune system. It is one of the most abundant microelements in our organism and an essential component of enzymes and antibacterial proteins. Zinc levels were reported to be correlated with the intensity of innate immunity responses, especially those triggered by neutrophils. However, as the results are fragmentary, the phenomenon is still not fully understood and requires further research. In this study, we aimed to perform a comprehensive assessment and study the impact of zinc on several basic neutrophils' functions in various experimental setups. Human and murine neutrophils were preincubated in vitro with zinc, and then phagocytosis, oxidative burst, degranulation and release of neutrophil extracellular traps (NETs) were analyzed. Moreover, a murine model of zinc deficiency and zinc supplementation was introduced in the study and the functions of isolated cells were thoroughly studied. We showed that zinc inhibits NETs release as well as degranulation in both human and murine neutrophils. Our study revealed that zinc decreases NETs release by inhibiting citrullination of histone H3. On the other hand, studies performed in zinc-deficient mice demonstrated that low zinc levels result in increased release of NETs and enhanced neutrophils degranulation. Overall, it was shown that zinc affects neutrophils' functions in vivo and in vitro. Proper zinc level is necessary to maintain efficient functioning of the innate immune response.
Project description:ObjectivesSubclinical environmental enteropathy is associated with malabsorption of fats, carbohydrates, and vitamins A, B12, and folate; however, little information is available on mineral absorption. We therefore investigated the relation between intestinal mucosal function (measured by the lactulose:mannitol permeability test and plasma citrulline concentration), and zinc (Zn) absorption, as estimated by the change in plasma Zn concentration (PZC) following short-term Zn or placebo supplementation.MethodsWe conducted a randomized, partially masked, placebo-controlled trial among 282 apparently healthy children 6 to 23 months of age in Burkina Faso. After completing baseline intestinal function tests, participants received either 5 mg Zn, as zinc sulfate, or placebo, daily for 21 days.ResultsAt baseline, mean ± standard deviation PZC was 62.9 ± 11.9 μg/dL; median (interquartile range) urinary lactulose:mannitol (L:M) recovery ratio and plasma citrulline concentrations were 0.04 (0.03-0.07) and 11.4 (9.0-15.6) μmol/L, respectively. Change in PZC was significantly greater in the Zn-supplemented versus placebo group (15.6 ± 13.3 vs 0.02 ± 10.9 μg/dL; P < 0.0001), and was negatively associated with initial urinary L:M recovery ratio (-1.1 μg/dL per 50% increase in urinary L:M recovery ratio; P = 0.014); this latter relation did not differ between supplementation groups (P = 0.26). Baseline plasma citrulline concentration was not associated with change in PZC.ConclusionsAlthough altered intestinal permeability may reduce dietary Zn absorption, it likely does not undermine the efficacy of Zn supplementation, given the large increases in PZC following short-term Zn supplementation observed in this study, even among those with increased urinary L:M recovery ratios.
Project description:BackgroundThe role of intestinal transporter regulation in optimising nutrient absorption has been studied extensively in rodent and cell line models but not in human subjects.AimsThe aim of the present study was to investigate the response in vivo of zinc transporters in the human enterocyte to dietary zinc supplementation.SubjectsEighteen patients who had previously undergone ileostomy, all free of any symptoms of inflammatory bowel disease.MethodsSubjects took a daily zinc supplement of 25 mg for 14 days in a double blind, placebo controlled, crossover trial. The effect of the supplement on expression in ileal biopsies of the zinc transporters SLC30A1, SLC30A4, SLC30A5, SLC39A1, SLC39A4, and metallothionein was measured by reverse transcription-polymerase chain reaction RT-PCR. Expression of SLC30A1, SLC30A5, and SLC39A4 was also examined by immunoblotting.ResultsThe zinc supplement reduced SLC30A1 mRNA (1.4-fold) together with SLC30A1, SLC30A5, and SLC39A4 protein (1.8-fold, 3.7-fold, and to undetectable levels, respectively) in ileal mucosa and increased metallothionein mRNA (1.7-fold). The supplement had no effect on expression of SLC30A4 or SLC39A1 mRNA. Localisation of SLC30A5 at the apical human enterocyte/colonocyte membrane and also at the apical membrane of Caco-2 cells was demonstrated by immunohistochemistry. Commensurate with these observations in zinc supplemented human subjects, SLC30A1, SLC30A5, and SLC39A4 mRNA and protein were reduced in Caco-2 cells cultured at 200 muM compared with 100 muM zinc.ConclusionsThese observations indicate that, in response to variations in dietary zinc intakes, regulated expression of plasma membrane zinc transporters in the human intestine contributes to maintenance of zinc status.
Project description:In order to study the impact of zinc and copper on the titer levels of mAb and recombinant protein in CHO cells, the IgG-expressing (DP12) and EPO-expressing (SK15) cell lines were cultured in chemically defined media with increasing concentrations of either metal. Supplementation with 25 mg/l in CDM media resulted in a significant increase in EPO (1.7-fold) and IgG (2.6-fold) titers compared to control (no added zinc). Titers at this Zn concentration in CDM containing the insulin replacing agent aurintricarboxylic acid (ATA) (CDM?+?A) showed a 1.8-fold (EPO) and 1.2-fold (IgG) titers increase compared to control. ATA appeared to also reduce the specific productivity (Qp) enhancement induced by Zn-25, with up to 4.9-fold (DP12) and 1.9-fold (SK15) Qp increase in CDM compared to the 1.6-fold (DP12) and 1.5-fold (SK15) Qp increase observed in CDM?+?A. A 31% reduced Viable Cell Density (VCD) in DP12 was observed in both Zn-supplemented media (3?×?106 cells/ml vs 4.2?×?106 cells/ml, day 5), whereas SK15 Zn-25 cultures displayed a 24% lower peak only in CDM?+?A (2.2?×?106 cells/ml vs 3.2?×?106 cells/ml, day 5). Supplementation with copper at 13.7-20 mg/l resulted in less significant cell line/product-type dependent effects on titer, VCD and Viability. Analysis of the energetic phenotype of both cell lines in 25 mg/l Zn-supplemented CDM media revealed a twofold increase in the oxygen consumption rate (OCR) compared to non-supplemented cells. Together, these data suggest that high zinc supplementation may induce an increase in oxidative respiration metabolism that results in increased Qp and titers in suspension CHO cultures.
Project description:In rats, mice, and humans, it is known that zinc deficiency may be related to anemia, and zinc supplementation influences hemoglobin production. Our previous studies indicate that in fish, zinc supplementation stimulates red blood cell (RBC) formation (erythropoiesis). However, it is not clear whether the mechanism of zinc-induced erythropoiesis stimulation in fish also occurs in rats. We induced anemia in rats using phenylhydrazine (PHZ) and injected either saline or ZnSO? solution. We found that an appropriate amount of zinc stimulated erythropoiesis in the PHZ-induced anemic rats. The effects of ZnSO? injection were dose-dependent. When the concentration of ZnSO? was higher than 2.8 mg zinc/kg body weight, the RBC level of the anemic rats increased from 60 ± 7% to 88 ± 10% that of the normal rats in two days. Rat bone marrow cells with or without ZnCl? supplementation were cultured in suspension in vitro. In the cell culture when the zinc concentration was at 0.3 mM, a 1.6-fold proliferation of nascent immature reticulocytes (new RBCs) was observed after one day. In the rat blood, zinc was combined with serum transferrin to induce erythropoiesis. The stimulation of RBC formation by zinc appears to be common among different animals.