Unknown

Dataset Information

0

Design and in Vivo Characterization of A1 Adenosine Receptor Agonists in the Native Ribose and Conformationally Constrained (N)-Methanocarba Series.


ABSTRACT: (N)-Methanocarba ([3.1.0]bicyclohexyl) adenosines and corresponding ribosides were synthesized to identify novel A1 adenosine receptor (A1AR) agonists for CNS or peripheral applications. Human and mouse AR binding was determined to assess the constrained ring system's A1AR compatibility. N6-Dicyclobutylmethyl ribose agonist (9, MRS7469, >2000-fold selective for A1AR) and known truncated N6-dicyclopropylmethyl methanocarba 7 (MRS5474) were drug-like. The pure diastereoisomer of known riboside 4 displayed high hA1AR selectivity. Methanocarba modification reduced A1AR selectivity of N6-dicyclopropylmethyl and endo-norbornyladenosines but increased ribavirin selectivity. Most analogues tested (ip) were inactive or weak in inducing mouse hypothermia, despite mA1AR full agonism and variable mA3AR efficacy, but strong hypothermia by 9 depended on A1AR, which reflects CNS activity (determined using A1AR or A3AR null mice). Conserved hA1AR interactions were preserved in modeling of 9 and methanocarba equivalent 24 (?400-fold A1AR-selective). Thus, we identified, and characterized in vivo, ribose and methanocarba nucleosides, including with A1AR-enhancing N6-dicyclobutylmethyl-adenine and 1,2,4-triazole-3-carboxamide (40, MRS7451) nucleobases.

SUBMITTER: Tosh DK 

PROVIDER: S-EPMC6467784 | biostudies-literature | 2019 Feb

REPOSITORIES: biostudies-literature

altmetric image

Publications

Design and in Vivo Characterization of A<sub>1</sub> Adenosine Receptor Agonists in the Native Ribose and Conformationally Constrained (N)-Methanocarba Series.

Tosh Dilip K DK   Rao Harsha H   Bitant Amelia A   Salmaso Veronica V   Mannes Philip P   Lieberman David I DI   Vaughan Kelli L KL   Mattison Julie A JA   Rothwell Amy C AC   Auchampach John A JA   Ciancetta Antonella A   Liu Naili N   Cui Zhenzhong Z   Gao Zhan-Guo ZG   Reitman Marc L ML   Gavrilova Oksana O   Jacobson Kenneth A KA  

Journal of medicinal chemistry 20190103 3


(N)-Methanocarba ([3.1.0]bicyclohexyl) adenosines and corresponding ribosides were synthesized to identify novel A<sub>1</sub> adenosine receptor (A<sub>1</sub>AR) agonists for CNS or peripheral applications. Human and mouse AR binding was determined to assess the constrained ring system's A<sub>1</sub>AR compatibility. N<sup>6</sup>-Dicyclobutylmethyl ribose agonist (9, MRS7469, >2000-fold selective for A<sub>1</sub>AR) and known truncated N<sup>6</sup>-dicyclopropylmethyl methanocarba 7 (MRS54  ...[more]

Similar Datasets

| S-EPMC2430186 | biostudies-literature
| S-EPMC7549272 | biostudies-literature
| S-EPMC3471159 | biostudies-literature
| S-EPMC3954500 | biostudies-literature
| S-EPMC4266358 | biostudies-literature
| S-EPMC2818678 | biostudies-literature
| S-EPMC5705437 | biostudies-other
| S-EPMC3156476 | biostudies-literature
| S-EPMC2597460 | biostudies-literature
| S-EPMC4970510 | biostudies-literature