Unknown

Dataset Information

0

Evaluation of 1,2,3-Triazoles as Amide Bioisosteres In Cystic Fibrosis Transmembrane Conductance Regulator Modulators VX-770 and VX-809.


ABSTRACT: The 1,2,3-triazole has been successfully utilized as an amide bioisostere in multiple therapeutic contexts. Based on this precedent, triazole analogues derived from VX-809 and VX-770, prominent amide-containing modulators of the cystic fibrosis transmembrane conductance regulator (CFTR), were synthesized and evaluated for CFTR modulation. Triazole 11, derived from VX-809, displayed markedly reduced efficacy in F508del-CFTR correction in cellular TECC assays in comparison to VX-809. Surprisingly, triazole analogues derived from potentiator VX-770 displayed no potentiation of F508del, G551D, or WT-CFTR in cellular Ussing chamber assays. However, patch clamp analysis revealed that triazole 60 potentiates WT-CFTR similarly to VX-770. The efficacy of 60 in the cell-free patch clamp experiment suggests that the loss of activity in the cellular assay could be due to the inability of VX-770 triazole derivatives to reach the CFTR binding site. Moreover, in addition to the negative impact on biological activity, triazoles in both structural classes displayed decreased metabolic stability in human microsomes relative to the analogous amides. In contrast to the many studies that demonstrate the advantages of using the 1,2,3-triazole, these findings highlight the negative impacts that can arise from replacement of the amide with the triazole and suggest that caution is warranted when considering use of the 1,2,3-triazole as an amide bioisostere.

SUBMITTER: Doiron JE 

PROVIDER: S-EPMC6469399 | biostudies-literature | 2019 Mar

REPOSITORIES: biostudies-literature

altmetric image

Publications

Evaluation of 1,2,3-Triazoles as Amide Bioisosteres In Cystic Fibrosis Transmembrane Conductance Regulator Modulators VX-770 and VX-809.

Doiron Jake E JE   Le Christina A CA   Ody Britton K BK   Brace Jonathon B JB   Post Savannah J SJ   Thacker Nathan L NL   Hill Harrison M HM   Breton Gary W GW   Mulder Matthew J MJ   Chang Sichen S   Bridges Thomas M TM   Tang Liping L   Wang Wei W   Rowe Steven M SM   Aller Stephen G SG   Turlington Mark M  

Chemistry (Weinheim an der Bergstrasse, Germany) 20190211 14


The 1,2,3-triazole has been successfully utilized as an amide bioisostere in multiple therapeutic contexts. Based on this precedent, triazole analogues derived from VX-809 and VX-770, prominent amide-containing modulators of the cystic fibrosis transmembrane conductance regulator (CFTR), were synthesized and evaluated for CFTR modulation. Triazole 11, derived from VX-809, displayed markedly reduced efficacy in F508del-CFTR correction in cellular TECC assays in comparison to VX-809. Surprisingly,  ...[more]

Similar Datasets

| S-EPMC5534211 | biostudies-literature
| S-EPMC3784376 | biostudies-literature
| S-EPMC6151340 | biostudies-literature
| S-EPMC4998663 | biostudies-literature
| S-EPMC5036583 | biostudies-literature
| S-EPMC6072493 | biostudies-other
| S-EPMC4467693 | biostudies-literature
| S-EPMC7666045 | biostudies-literature