Density Functional Theory Investigations on the Mechanism of Formation of Pa(V) Ion in Hydrous Solutions.
Ontology highlight
ABSTRACT: Due to the enormous threat of protactinium to the environment and human health, its disposal and chemistry have long been important topics in nuclear science. [PaO(H₂O)₆]3+ is proposed as the predominant species in hydrous and acidic solutions, but little is known about its formation mechanism. In this study, density functional theory (DFT) calculations demonstrate a water coordination-proton transfer-water dissociation mechanism for the formation of PaO3+ in hydrous solutions. First, Pa(V) ion preferentially forms hydrated complexes with a coordination number of 10. Through hydrogen bonding, water molecules in the second coordination sphere easily capture two protons on the same coordinated H₂O ligand to form [PaO(H₂O)₉]3+. Water dissociation then occurs to generate the final [PaO(H₂O)₆]3+, which is the thermodynamic product of Pa(V) in hydrous solutions.
SUBMITTER: Ma J
PROVIDER: S-EPMC6471942 | biostudies-literature |
REPOSITORIES: biostudies-literature
ACCESS DATA