Hexagonal and Square Patterned Silver Nanowires/PEDOT:PSS Composite Grids by Screen Printing for Uniformly Transparent Heaters.
Ontology highlight
ABSTRACT: Transparent conductive films with hexagonal and square patterns were fabricated on poly(ethylene terephthalate) (PET) substrates by screen printing technology utilizing a poly(3,4-ethylenedioxythiophene) poly(styrenesulfonate) (PEDOT:PSS) and silver nanowire (Ag NWs) composite ink. The printing parameters-mesh number, printing layer, mass ratio of PEDOT:PSS to Ag NWs and pattern shape-have a significant influence on the photoelectric properties of the composite films. The screen mesh with a mesh number of 200 possesses a suitable mesh size of 74 µm for printing clear and integrated grids with high transparency. With an increase in the printing layer and a decrease in the mass ratio of PEDOT:PSS to Ag NWs, the transmittance and resistance of the printed grids both decreased. When the printing layer is 1, the transmittance and resistance are 85.6% and 2.23 k? for the hexagonal grid and 77.3% and 8.78 k? for the square grid, indicating that the more compact arrangement of square grids reduces the transmittance, and the greater number of connections of the square grid increases the resistance. Therefore, it is believed that improved photoelectric properties of transparent electrodes could be obtained by designing a printing pattern with optimized printing parameters. Additionally, the Ag NWs/PEDOT:PSS composite films with hexagonal and square patterns exhibit high transparency and good uniformity, suggesting promising applications in large-area and uniform heaters.
SUBMITTER: He X
PROVIDER: S-EPMC6473526 | biostudies-literature | 2019 Mar
REPOSITORIES: biostudies-literature
ACCESS DATA