Unknown

Dataset Information

0

Maskless Spatioselective Functionalization of Silicon Nanowires.


ABSTRACT: Spatioselective functionalization of silicon nanowires was achieved without using a masking material. The designed process combines metal-assisted chemical etching (MACE) to fabricate silicon nanowires and hydrosilylation to form molecular monolayers. After MACE, a monolayer was formed on the exposed nanowire surfaces. A second MACE step was expected to elongate the nanowires, thus creating two different segments. When monolayers of 1-undecene or 1-tetradecyne were formed on the upper segment, however, the second MACE step did not extend the nanowires. In contrast, nanowires functionalized with 1,8-nonadiyne were elongated, but at an approximately 8 times slower etching rate. The elongation resulted in a contrast difference in high-resolution scanning electron microscopy (HR-SEM) images, which indicated the formation of nanowires that were covered with a monolayer only at the top parts. Click chemistry was successfully used for secondary functionalization of the monolayer with azide-functionalized nanoparticles. The spatioselective presence of 1,8-nonadiyne gave a threefold higher particle density on the upper segment functionalized with 1,8-nonadiyne than on the lower segment without monolayer. These results indicate the successful spatioselective functionalization of silicon nanowires fabricated by MACE.

SUBMITTER: Veerbeek J 

PROVIDER: S-EPMC6473541 | biostudies-literature | 2018 Aug

REPOSITORIES: biostudies-literature

altmetric image

Publications

Maskless Spatioselective Functionalization of Silicon Nanowires.

Veerbeek Janneke J   Huskens Jurriaan J  

ChemNanoMat : chemistry of nanomaterials for energy, biology and more 20180529 8


Spatioselective functionalization of silicon nanowires was achieved without using a masking material. The designed process combines metal-assisted chemical etching (MACE) to fabricate silicon nanowires and hydrosilylation to form molecular monolayers. After MACE, a monolayer was formed on the exposed nanowire surfaces. A second MACE step was expected to elongate the nanowires, thus creating two different segments. When monolayers of 1-undecene or 1-tetradecyne were formed on the upper segment, h  ...[more]

Similar Datasets

| S-EPMC6158678 | biostudies-literature
| S-EPMC4451685 | biostudies-other
| S-EPMC3242411 | biostudies-literature
| S-EPMC3746203 | biostudies-literature
| S-EPMC3904146 | biostudies-literature
| S-EPMC10786831 | biostudies-literature
| S-EPMC7522788 | biostudies-literature
| S-EPMC2971684 | biostudies-literature
| S-EPMC2810957 | biostudies-literature
| S-EPMC3535553 | biostudies-literature