Unknown

Dataset Information

0

A Phenomenological Approach to Study Mechanical Properties of Polymeric Porous Structures Processed Using Supercritical CO?.


ABSTRACT: This work proposes a modeling of the mechanical properties of porous polymers processed by scCO?, using a phenomenological approach. Tensile and compression tests of alginate/gelatin and cellulose acetate/graphene oxide were modeled using three hyperelastic equations, derived from strain energy functions. The proposed hyperelastic equations provide a fair good fit for mechanical behavior of the nanofibrous system alginate/gelatin (deviations lower than 10%); whereas, due to the presence of the solid in the polymer network, a four-parameter model must be used to fit the composite cellulose acetate/graphene oxide behavior. Larger deviations from the experimental data were observed for the system cellulose acetate/graphene oxide because of its microporous structure. A finite element method was, then, proposed to model both systems; it allowed a realistic description of observable displacements and effective stresses. The results indicate that materials processed using scCO?, when submitted to large stresses, do not obey Hooke´s law and must be considered as hyperelastic.

SUBMITTER: Tabernero A 

PROVIDER: S-EPMC6473646 | biostudies-literature | 2019 Mar

REPOSITORIES: biostudies-literature

altmetric image

Publications

A Phenomenological Approach to Study Mechanical Properties of Polymeric Porous Structures Processed Using Supercritical CO₂.

Tabernero Antonio A   Baldino Lucia L   Cardea Stefano S   Martín Del Valle Eva E   Reverchon Ernesto E  

Polymers 20190313 3


This work proposes a modeling of the mechanical properties of porous polymers processed by scCO₂, using a phenomenological approach. Tensile and compression tests of alginate/gelatin and cellulose acetate/graphene oxide were modeled using three hyperelastic equations, derived from strain energy functions. The proposed hyperelastic equations provide a fair good fit for mechanical behavior of the nanofibrous system alginate/gelatin (deviations lower than 10%); whereas, due to the presence of the s  ...[more]

Similar Datasets

| S-EPMC6429194 | biostudies-literature
| S-EPMC6460060 | biostudies-literature
| S-EPMC7078848 | biostudies-literature
| S-EPMC4830974 | biostudies-other
| S-EPMC5512969 | biostudies-other
| S-EPMC5452833 | biostudies-other