Unknown

Dataset Information

0

Room temperature polariton lasing in quantum heterostructure nanocavities.


ABSTRACT: Ultralow-threshold coherent light emitters can be achieved through lasing from exciton-polariton condensates, but this generally requires sophisticated device structures and cryogenic temperatures. Polaritonic nanolasers operating at room temperature lie on the crucial path of related research, not only for the exploration of polariton physics at the nanoscale but also for potential applications in quantum information systems, all-optical logic gates, and ultralow-threshold lasers. However, at present, progress toward room temperature polariton nanolasers has been limited by the thermal instability of excitons and the inherently low quality factors of nanocavities. Here, we demonstrate room temperature polaritonic nanolasers by designing wide-gap semiconductor heterostructure nanocavities to produce thermally stable excitons coupled with nanocavity photons. The resulting mixed states of exciton polaritons with Rabi frequencies of approximately 370 meV enable persistent polariton lasing up to room temperature, facilitating the realization of miniaturized and integrated polariton systems.

SUBMITTER: Kang JW 

PROVIDER: S-EPMC6474768 | biostudies-literature | 2019 Apr

REPOSITORIES: biostudies-literature

altmetric image

Publications

Room temperature polariton lasing in quantum heterostructure nanocavities.

Kang Jang-Won JW   Song Bokyung B   Liu Wenjing W   Park Seong-Ju SJ   Agarwal Ritesh R   Cho Chang-Hee CH  

Science advances 20190419 4


Ultralow-threshold coherent light emitters can be achieved through lasing from exciton-polariton condensates, but this generally requires sophisticated device structures and cryogenic temperatures. Polaritonic nanolasers operating at room temperature lie on the crucial path of related research, not only for the exploration of polariton physics at the nanoscale but also for potential applications in quantum information systems, all-optical logic gates, and ultralow-threshold lasers. However, at p  ...[more]

Similar Datasets

| S-EPMC6386577 | biostudies-literature
| S-EPMC10433738 | biostudies-literature
| S-EPMC5514101 | biostudies-literature
| S-EPMC7371636 | biostudies-literature
| S-EPMC7280250 | biostudies-literature
| S-EPMC4947385 | biostudies-literature
| S-EPMC9249758 | biostudies-literature
| S-EPMC6007962 | biostudies-literature
| S-EPMC6544457 | biostudies-literature
| S-EPMC11342920 | biostudies-literature