Unknown

Dataset Information

0

Distinct DNA Sequence Preference for Histone Occupancy in Primary and Transformed Cells.


ABSTRACT: Genome-wide occupancy of several histone modifications in various cell types has been studied using chromatin immunoprecipitation (ChIP) sequencing. Histone occupancy depends on DNA sequence features like inter-strand symmetry of base composition and periodic occurrence of TT/AT. However, whether DNA sequence motifs act as an additional effector of histone occupancy is not known. We have analyzed the presence of DNA sequence motifs in publicly available ChIP-sequence datasets for different histone modifications. Our results show that DNA sequence motifs are associated with histone occupancy, some of which are different between primary and transformed cells. The motifs for primary and transformed cells showed different levels of GC-richness and proximity to transcription start sites (TSSs). The TSSs associated with transformed or primary cell-specific motifs showed different levels of TSS flank transcription in primary and transformed cells. Interestingly, TSSs with a motif-linked occupancy of H2AFZ, a component of positioned nucleosomes, showed a distinct pattern of RNA Polymerase II (POLR2A) occupancy and TSS flank transcription in primary and transformed cells. These results indicate that DNA sequence features dictate differential histone occupancy in primary and transformed cells, and the DNA sequence motifs affect transcription through regulation of histone occupancy.

SUBMITTER: Datta S 

PROVIDER: S-EPMC6475841 | biostudies-literature | 2019

REPOSITORIES: biostudies-literature

altmetric image

Publications

Distinct DNA Sequence Preference for Histone Occupancy in Primary and Transformed Cells.

Datta Subhamoy S   Patel Manthan M   Patel Divyesh D   Singh Umashankar U  

Cancer informatics 20190419


Genome-wide occupancy of several histone modifications in various cell types has been studied using chromatin immunoprecipitation (ChIP) sequencing. Histone occupancy depends on DNA sequence features like inter-strand symmetry of base composition and periodic occurrence of TT/AT. However, whether DNA sequence motifs act as an additional effector of histone occupancy is not known. We have analyzed the presence of DNA sequence motifs in publicly available ChIP-sequence datasets for different histo  ...[more]

Similar Datasets

| S-EPMC7605266 | biostudies-literature
| S-EPMC2515632 | biostudies-literature
| S-EPMC2930422 | biostudies-literature
| S-EPMC2790884 | biostudies-other
| S-EPMC2993347 | biostudies-literature
| S-EPMC2936528 | biostudies-literature
| S-EPMC3071895 | biostudies-literature
| S-EPMC5646869 | biostudies-literature
2020-06-22 | E-MTAB-8406 | biostudies-arrayexpress