Crude ?-Mangostin Suppresses the Development of Atherosclerotic Lesions in Apoe-Deficient Mice by a Possible M2 Macrophage-Mediated Mechanism.
Ontology highlight
ABSTRACT: Lifestyle choices play a significant role in the etiology of atherosclerosis. Male Apoe-/- mice that develop spontaneous atherosclerotic lesions were fed 0%, 0.3%, and 0.4% mangosteen extracts, composed largely of ?-mangostin (MG), for 17 weeks. Body weight gains were significantly decreased in both MG-treated groups compared to the control, but the general condition remained good throughout the study. The levels of total cholesterol (decreased very-low-density lipoprotein in lipoprotein profile) and triglycerides decreased significantly in the MG-treated mice in conjunction with decreased hepatic HMG-CoA synthase and Fatty acid transporter. Additionally, increased serum lipoprotein lipase activity and histopathology further showed a significant reduction in atherosclerotic lesions at both levels of MG exposure. Real-time PCR analysis for macrophage indicators showed a significant elevation in the levels of Cd163, an M2 macrophage marker, in the lesions of mice receiving 0.4% MG. However, the levels of Nos2, associated with M1 macrophages, showed no change. In addition, quantitative immunohistochemical analysis of macrophage subtypes showed a tendency for increased M2 populations (CD68?/CD163?) in the lesions of mice given 0.4% MG. In further analysis of the cytokine-polarizing macrophage subtypes, the levels of Interleukin13 (Il13), associated with M2 polarization, were significantly elevated in lesions exposed to 0.4% MG. Thus, MG could suppress the development of atherosclerosis in Apoe-/- mice, possibly through an M2 macrophage-mediated mechanism.
SUBMITTER: Shibata MA
PROVIDER: S-EPMC6480575 | biostudies-literature | 2019 Apr
REPOSITORIES: biostudies-literature
ACCESS DATA