Unknown

Dataset Information

0

The combined efficacy of OTS964 and temozolomide for reducing the size of power-law coded heterogeneous glioma stem cell populations.


ABSTRACT: Glioblastoma resists chemotherapy then recurs as a fatal space-occupying lesion. To improve the prognosis, the issues of chemoresistance and tumor size should be addressed. Glioma stem cell (GSC) populations, a heterogeneous power-law coded population in glioblastoma, are believed to be responsible for the recurrence and progressive expansion of tumors. Thus, we propose a therapeutic strategy of reducing the initial size and controlling the regrowth of GSC populations which directly facilitates initial and long-term control of glioblastoma recurrence. In this study, we administered an anti-glioma/GSC drug temozolomide (TMZ) and OTS964, an inhibitor for T-Lak cell originated protein kinase, in combination (T&O), investigating whether together they efficiently and substantially shrink the initial size of power-law coded GSC populations and slow the long-term re-growth of drug-resistant GSC populations. We employed a detailed quantitative approach using clonal glioma sphere (GS) cultures, measuring sphere survivability and changes to growth during the self-renewal. T&O eliminated self-renewing GS clones and suppressed their growth. We also addressed whether T&O reduced the size of self-renewed GS populations. T&O quickly reduced the size of GS populations via efficient elimination of GS clones. The growth of the surviving T&O-resistant GS populations was continuously disturbed, leading to substantial long-term shrinkage of the self-renewed GS populations. Thus, T&O reduced the initial size of GS populations and suppressed their later regrowth. A combination therapy of TMZ and OTS964 would represent a novel therapeutic paradigm with the potential for long-term control of glioblastoma recurrence via immediate and sustained shrinkage of power-law coded heterogeneous GSC populations.

SUBMITTER: Sugimori M 

PROVIDER: S-EPMC6481323 | biostudies-literature | 2019 Mar

REPOSITORIES: biostudies-literature

altmetric image

Publications

The combined efficacy of OTS964 and temozolomide for reducing the size of power-law coded heterogeneous glioma stem cell populations.

Sugimori Michiya M   Hayakawa Yumiko Y   Tamura Ryoi R   Kuroda Satoshi S  

Oncotarget 20190322 24


Glioblastoma resists chemotherapy then recurs as a fatal space-occupying lesion. To improve the prognosis, the issues of chemoresistance and tumor size should be addressed. Glioma stem cell (GSC) populations, a heterogeneous power-law coded population in glioblastoma, are believed to be responsible for the recurrence and progressive expansion of tumors. Thus, we propose a therapeutic strategy of reducing the initial size and controlling the regrowth of GSC populations which directly facilitates  ...[more]

Similar Datasets

| S-EPMC5790444 | biostudies-literature
| S-EPMC4540573 | biostudies-literature
| S-EPMC33276 | biostudies-literature
| S-EPMC5789915 | biostudies-literature
| S-EPMC6296670 | biostudies-literature
| S-EPMC7544363 | biostudies-literature
| S-EPMC7556502 | biostudies-literature
| S-EPMC5809866 | biostudies-literature
| S-EPMC5098201 | biostudies-literature
| S-EPMC4890042 | biostudies-literature