Associations between types of greenery along neighborhood roads and weight status in different climates.
Ontology highlight
ABSTRACT: Obesity is a major international health concern. Neighborhood greenery has been identified as a critical factor for promoting health in urban areas, due in part to its apparent role in facilitating healthy weight by promoting physical activity. However, studies have used diverse greenery measures and spatial analysis units to ascertain this relationship. This study examined associations between street greenery and weight status at the residential address level across 500 to 2000m buffers in two climatically distinct communities, Phoenix, AZ, and Portland, OR. Greenery was measured using one-meter landcover data. Street greenery measures were designed to quantify the pedestrian environment along a gradient of suitability for promoting physical exercise. Weight status was defined by body mass index (BMI) calculated from weight and height information on driver's license records. BMI values were dichotomized at 25 into overweight or obese vs. neither. Approximately 500,000 BMI values in Phoenix and 225,000 in Portland were modelled by community using logistic regression. Street tree cover was consistently protective for healthy weight status across all buffer sizes after adjusting for potential confounders. Herbaceous street cover showed protective associations in Phoenix but harmful associations in Portland. Every 10% increase in street tree cover within 2000m was associated with 18% lower odds of being overweight or obese (adjusted odds ratio [AOR]: 0.82, 95% CI: 0.81 - 0.84 in Phoenix; 0.82, 95% CI: 0.81 - 0.83 in Portland). When compared to residents with less than 10% street tree cover within 2000m, those with greater than 10% tree cover had at least 13% (AOR for Portland: 0.87, 95% CI: 0.81 - 0.92) lower odds of being overweight or obese. Findings support the importance of urban street trees in very different climates for facilitating healthy weight status. They can inform greenery management to prioritize vegetation type and allocation decisions in limited urban spaces.
SUBMITTER: Tsai WL
PROVIDER: S-EPMC6483109 | biostudies-literature | 2019 May
REPOSITORIES: biostudies-literature
ACCESS DATA