Project description:BACKGROUND:The myelodysplastic syndrome (MDS) comprises a diverse group of haematopoietic stem cell disorders. Due to symptomatic anaemia, most people with MDS require supportive therapy including repeated red blood cell (RBC) transfusions. In combination with increased iron absorption, this contributes to the accumulation of iron resulting in secondary iron overload and the risk of organ dysfunction and reduced life expectancy. Since the human body has no natural means of removing excess iron, iron chelation therapy, i.e. the pharmacological treatment of iron overload, is usually recommended. However, it is unclear whether or not the newer oral chelator deferasirox leads to relevant benefit. OBJECTIVES:To evaluate the effectiveness and safety of oral deferasirox for managing iron overload in people with myelodysplastic syndrome (MDS). SEARCH METHODS:We searched the following databases up to 03 April 2014: MEDLINE, EMBASE, The Cochrane Library, Biosis Previews, Web of Science, Derwent Drug File and four trial registries: Current Controlled Trials (www.controlled-trials.com), ClinicalTrials.gov (www.clinicaltrials.gov), ICTRP (www.who.int./ictrp/en/), and German Clinical Trial Register (www.drks.de). SELECTION CRITERIA:Randomised controlled trials (RCTs) comparing deferasirox with no therapy, placebo or with another iron-chelating treatment schedule. DATA COLLECTION AND ANALYSIS:We did not identify any trials eligible for inclusion in this review. MAIN RESULTS:No trials met our inclusion criteria. However, we identified three ongoing and one completed trial (published as an abstract only and in insufficient detail to permit us to decide on inclusion) comparing deferasirox with deferoxamine, placebo or no treatment. AUTHORS' CONCLUSIONS:We planned to report evidence from RCTs that evaluated the effectiveness of deferasirox compared to either placebo, no treatment or other chelating regimens, such as deferoxamine, in people with MDS. However, we did not identify any completed RCTs addressing this question.We found three ongoing and one completed RCT (published as an abstract only and in insufficient detail) comparing deferasirox with deferoxamine, placebo or no treatment and data will hopefully be available soon. These results will be important to inform physicians and patients on the advantages and disadvantages of this treatment option.
Project description:Deferasirox (DFX) monotherapy is effective for reducing myocardial and liver iron concentrations (LIC), although some patients may require intensive chelation for a limited duration. HYPERION, an open-label single-arm prospective phase 2 study, evaluated combination DFX-deferoxamine (DFO) in patients with severe transfusional myocardial siderosis (myocardial [m] T2* 5-<10 ms; left ventricular ejection fraction [LVEF] ?56%) followed by optional switch to DFX monotherapy when achieving mT2* >10 ms. Mean dose was 30.5 mg/kg per day DFX and 36.3 mg/kg per day DFO on a 5-day regimen. Geometric mean mT2* ratios (Gmeanmonth12/24/Gmeanbaseline) were 1.09 and 1.30, respectively, increasing from 7.2 ms at baseline (n = 60) to 7.7 ms at 12 (n = 52) and 9.5 ms at 24 months (n = 36). Patients (17 of 60; 28.3%) achieved mT2* ?10 ms and ?10% increase from baseline at month 24; 15 switched to monotherapy during the study based on favorable mT2*. LIC decreased substantially from a baseline of 33.4 to 12.8 mg Fe/g dry weight at month 24 (-52%). LVEF remained stable with no new arrhythmias/cardiac failure. Five patients discontinued with mT2* <5 ms and 1 died (suspected central nervous system infection). Safety was consistent with established monotherapies. Results show clinically meaningful improvements in mT2* in about one-third of patients remaining on treatment at month 24, alongside rapid decreases in LIC in this heavily iron-overloaded, difficult-to-treat population. Combination therapy may be useful when rapid LIC reduction is required, regardless of myocardial iron overload. This trial was registered at www.clinicaltrials.gov as #NCT01254227.
Project description:RATIONALE: Deferasirox may remove excess iron from the body caused by blood transfusions.
PURPOSE: This clinical trial studies deferasirox in treating iron overload caused by blood transfusions in patients with hematologic malignancies.
Project description:BackgroundPatients with ?-thalassaemia major experience chronic iron overload due to regular blood transfusions. Chronic iron overload can be treated using iron-chelating therapies such as desferrioxamine (DFO), deferiprone (DFP) and deferasirox (DFX) monotherapy, or DFO-DFP combination therapy.ObjectivesThis study evaluated the relative cost effectiveness of these regimens over a 5-year timeframe from a UK National Health Service (NHS) perspective, including personal and social services.MethodsA Markov model was constructed to evaluate the cost effectiveness of the treatment regimens over 5 years. Based on published randomized controlled trial evidence, it was assumed that all four treatment regimens had a comparable effect on serum ferritin concentration (SFC) and liver iron concentration (LIC), and that DFP was more effective for reducing cardiac morbidity and mortality. Published utility scores for route of administration were used, with subcutaneously administered DFO assumed to incur a greater quality of life (QoL) burden than the oral chelators DFP and DFX. Healthcare resource use, drug costs (2010/2011 costs), and utilities associated with adverse events were also considered, with the effect of varying all parameters assessed in sensitivity analysis. Incremental costs and quality-adjusted life-years (QALYs) were calculated for each treatment, with cost effectiveness expressed as incremental cost per QALY. Assumptions that DFP conferred no cardiac morbidity, mortality, or morbidity and mortality benefit were also explored in scenario analysis.ResultsDFP was the dominant strategy in all scenarios modelled, providing greater QALY gains at a lower cost. Sensitivity analysis showed that DFP dominated all other treatments unless the QoL burden associated with the route of administration was greater for DFP than for DFO, which is unlikely to be the case. DFP had >99 % likelihood of being cost effective against all comparators at a willingness-to-pay threshold of £20,000 per QALY.ConclusionsIn this analysis, DFP appeared to be the most cost-effective treatment available for managing chronic iron overload in ?-thalassaemia patients. Use of DFP in these patients could therefore result in substantial cost savings.
Project description:Patients with non-transfusion-dependent thalassemia (NTDT) often develop iron overload that requires chelation to levels below the threshold associated with complications. This can take several years in patients with high iron burden, highlighting the value of long-term chelation data. Here, we report the 1-year extension of the THALASSA trial assessing deferasirox in NTDT; patients continued with deferasirox or crossed from placebo to deferasirox. Of 133 patients entering extension, 130 completed. Liver iron concentration (LIC) continued to decrease with deferasirox over 2 years; mean change was -7.14 mg Fe/g dry weight (dw) (mean dose 9.8 ± 3.6 mg/kg/day). In patients originally randomized to placebo, whose LIC had increased by the end of the core study, LIC decreased in the extension with deferasirox with a mean change of -6.66 mg Fe/g dw (baseline to month 24; mean dose in extension 13.7 ± 4.6 mg/kg/day). Of 166 patients enrolled, 64 (38.6 %) and 24 (14.5 %) patients achieved LIC <5 and <3 mg Fe/g dw by the end of the study, respectively. Mean LIC reduction was greatest in patients with the highest pretreatment LIC. Deferasirox progressively decreases iron overload over 2 years in NTDT patients with both low and high LIC. Safety profile of deferasirox over 2 years was consistent with that in the core study.
Project description:OBJECTIVE:To explore the efficacy and safety of deferasirox in aplastic anemia (AA)patients with iron overload. METHODS:A single arm, multi- center, prospective, open- label study was conducted to evaluate absolute change in serum ferritin (SF)from baseline to 12 months of deferasirox administration, initially at a dose of 20 mg·kg(-1)·d(-1), and the safety in 64 AA patients with iron overload. RESULTS:All patients started their deferasirox treatment with a daily dose of 20 mg · kg(-1) ·d(-1). The mean actual dose was (18.6±3.60) mg · kg(-1)·d(-1). The median SF decreased from 4 924 (2 718- 6 765)?g/L at baseline (n=64) to 3 036 (1 474- 5 551)?g/L at 12 months (n=23) with the percentage change from baseline as 38%. A median SF decrease of 651 (126-2 125)?g/L was observed at the end of study in 23 patients who completed 12 months' treatment, the median SF level decreased by 1 167(580-4 806)?g/L [5 271(3 420-8 278)?g/L at baseline; 3 036(1 474-5 551)?g/L after 12 months' treatment; the percentage change from baseline as 42% ] after 12 months of deferasirox treatment. The most common adverse events (AEs) were increased serum creatinine levels (40.98%), gastrointestinal discomfort (40.98%), elevated liver transaminase (ALT: 21.31%; AST: 13.11%)and proteinuria (24.59%). The increased serum creatinine levels were reversible and non-progressive. Of 38 patients with concomitant cyclosporine use, 12(31.8%)patients had two consecutive values >ULN, 10(26.3%)patients had two consecutive values >1.33 baseline values, but only 1(2.6%)patient's serum creatinine increased more than 1.33 baseline values and exceeded ULN. For both AST and ALT, no patients experienced two post- baseline values >5 ×ULN or >10 × ULN during the whole study. In AA patients with low baseline PLT count (less than 50 × 10(9)/L), there was no decrease for median PLT level during 12 months' treatment period. CONCLUSIONS:AA patients with iron overload could achieve satisfactory efficacy of iron chelation by deferasirox treatment. The drug was well tolerated with a clinically manageable safety profile and no major adverse events.
Project description:Transfusion-associated iron overload induces systemic toxicity. Deferasirox, a convenient long acting oral agent, has recently been introduced in clinical practice with a promising efficacy. But there are some patients who experience drug-related toxicities and cannot tolerate it. To investigate effect of genetic variations on the toxicities and find optimal target population, we analyzed the genetic polymorphisms of UDP-glucuronosyltransferase 1A (UGT1A) subfamily, multi-drug resistance-associated protein 2 (MRP2) and breast cancer resistance protein (BCRP). A total of 20 functional genetic polymorphisms were analyzed in 98 patients who received deferasirox to reduce transfusion-induced iron overload. We retrospectively reviewed the medical records to find out the drug-related toxicities. Fifteen (15.3%) patients developed hepatotoxicity. Patients without wild-type allele carrying two MRP2 haplotypes containing -1774 del and/or -24T were at increased risk of developing hepatotoxicity compared to patients with the wild-type allele on multivariate analysis (OR?=?7.17, 95% CI?=?1.79-28.67, P?=?0.005). Creatinine elevation was observed in 9 patients (9.2%). Body weight ?40 kg and homozygosity for UGT1A1*6 were risk factors of creatinine elevation (OR?=?8.48, 95% CI?=?1.7-43.57, P?=?0.010 and OR?=?14.17, 95% CI?=?1.34-150.35, P?=?0.028). Our results indicate that functional genetic variants of enzymes to metabolize and transport deferasirox are associated with drug-related toxicities. Further studies are warranted to confirm the results as the pharmacogenetic biomarkers of deferasirox.