Unknown

Dataset Information

0

Genetic variant predictors of gene expression provide new insight into risk of colorectal cancer.


ABSTRACT: Genome-wide association studies have reported 56 independently associated colorectal cancer (CRC) risk variants, most of which are non-coding and believed to exert their effects by modulating gene expression. The computational method PrediXcan uses cis-regulatory variant predictors to impute expression and perform gene-level association tests in GWAS without directly measured transcriptomes. In this study, we used reference datasets from colon (n?=?169) and whole blood (n?=?922) transcriptomes to test CRC association with genetically determined expression levels in a genome-wide analysis of 12,186 cases and 14,718 controls. Three novel associations were discovered from colon transverse models at FDR???0.2 and further evaluated in an independent replication including 32,825 cases and 39,933 controls. After adjusting for multiple comparisons, we found statistically significant associations using colon transcriptome models with TRIM4 (discovery P?=?2.2?×?10-?4, replication P?=?0.01), and PYGL (discovery P?=?2.3?×?10-?4, replication P?=?6.7?×?10-?4). Interestingly, both genes encode proteins that influence redox homeostasis and are related to cellular metabolic reprogramming in tumors, implicating a novel CRC pathway linked to cell growth and proliferation. Defining CRC risk regions as one megabase up- and downstream of one of the 56 independent risk variants, we defined 44 non-overlapping CRC-risk regions. Among these risk regions, we identified genes associated with CRC (P?

SUBMITTER: Bien SA 

PROVIDER: S-EPMC6483948 | biostudies-literature | 2019 Apr

REPOSITORIES: biostudies-literature

altmetric image

Publications

Genetic variant predictors of gene expression provide new insight into risk of colorectal cancer.

Bien Stephanie A SA   Su Yu-Ru YR   Conti David V DV   Harrison Tabitha A TA   Qu Conghui C   Guo Xingyi X   Lu Yingchang Y   Albanes Demetrius D   Auer Paul L PL   Banbury Barbara L BL   Berndt Sonja I SI   Bézieau Stéphane S   Brenner Hermann H   Buchanan Daniel D DD   Caan Bette J BJ   Campbell Peter T PT   Carlson Christopher S CS   Chan Andrew T AT   Chang-Claude Jenny J   Chen Sai S   Connolly Charles M CM   Easton Douglas F DF   Feskens Edith J M EJM   Gallinger Steven S   Giles Graham G GG   Gunter Marc J MJ   Hampe Jochen J   Huyghe Jeroen R JR   Hoffmeister Michael M   Hudson Thomas J TJ   Jacobs Eric J EJ   Jenkins Mark A MA   Kampman Ellen E   Kang Hyun Min HM   Kühn Tilman T   Küry Sébastien S   Lejbkowicz Flavio F   Le Marchand Loic L   Milne Roger L RL   Li Li L   Li Christopher I CI   Lindblom Annika A   Lindor Noralane M NM   Martín Vicente V   McNeil Caroline E CE   Melas Marilena M   Moreno Victor V   Newcomb Polly A PA   Offit Kenneth K   Pharaoh Paul D P PDP   Potter John D JD   Qu Chenxu C   Riboli Elio E   Rennert Gad G   Sala Núria N   Schafmayer Clemens C   Scacheri Peter C PC   Schmit Stephanie L SL   Severi Gianluca G   Slattery Martha L ML   Smith Joshua D JD   Trichopoulou Antonia A   Tumino Rosario R   Ulrich Cornelia M CM   van Duijnhoven Fränzel J B FJB   Van Guelpen Bethany B   Weinstein Stephanie J SJ   White Emily E   Wolk Alicja A   Woods Michael O MO   Wu Anna H AH   Abecasis Goncalo R GR   Casey Graham G   Nickerson Deborah A DA   Gruber Stephen B SB   Hsu Li L   Zheng Wei W   Peters Ulrike U  

Human genetics 20190228 4


Genome-wide association studies have reported 56 independently associated colorectal cancer (CRC) risk variants, most of which are non-coding and believed to exert their effects by modulating gene expression. The computational method PrediXcan uses cis-regulatory variant predictors to impute expression and perform gene-level association tests in GWAS without directly measured transcriptomes. In this study, we used reference datasets from colon (n = 169) and whole blood (n = 922) transcriptomes t  ...[more]

Similar Datasets

| S-EPMC5554234 | biostudies-other
| S-EPMC9640550 | biostudies-literature
| S-EPMC4566297 | biostudies-literature
| S-EPMC10980521 | biostudies-literature
| S-EPMC2805743 | biostudies-literature
| S-EPMC7588726 | biostudies-literature
| S-EPMC3818310 | biostudies-literature
| S-EPMC4196149 | biostudies-literature
| S-EPMC5592927 | biostudies-literature
| EGAC00001002514 | EGA