Project description:An adaptive design allows the modifications of various features, such as sample size and treatment assignments, in a clinical study based on the analysis of interim data. The goal is to enhance statistical efficiency by maximizing relevant information obtained from the clinical data. The promise of efficiency, however, comes with a cost, per se, that is seldom made explicit in the literature. This article reviews some commonly used adaptive strategies in early-phase stroke trials and discusses their associated costs. Specifically, we illustrate the trade-offs in several clinical contexts, including dose-finding in the Neuroprotection with Statin Therapy for Acute Recovery Trial (NeuSTART), futility analyses and internal pilot in Phase 2 proof-of-concept trials, and sample size considerations in an imaging-based dose-selection trial. Through these illustrations, we demonstrate the potential tension between the perspectives of an individual investigator and that of the broader community of stakeholders. This understanding is critical to appreciate the limitations, as well as the full promise, of adaptive designs, so that investigators can deploy an appropriate statistical design--be it adaptive or not--in a clinical study.
Project description:BackgroundThe Biomarker Strategy Design has been proposed for trials assessing the value of a biomarker in guiding treatment in oncology. In such trials, patients are randomised to either receive the standard chemotherapy treatment or a biomarker-directed treatment arm, in which biomarker status is used to guide treatment.MethodsMotivated by a current trial, we consider an adaptive design in which two biomarkers are assessed. The trial is conducted in two stages. In the first stage, patients in the biomarker-guided arm are assessed using a standard and an alternative cheaper biomarker, with the standard biomarker guiding treatment. An analysis comparing biomarker results is then used to choose the biomarker to use for the remainder of the trial. The new biomarker is used if the results for the two biomarkers are sufficiently similar.ResultsWe show that in practical situations the first-stage results can be used to adapt the trial without type I error rate inflation. We also show that there can be considerable cost gains with only a small loss in power in the case where the alternative biomarker is highly concordant with the standard one.ConclusionsAdaptive designs have an important role in reducing the cost and increasing the clinical utility of trials evaluating biomarker-guided treatment strategies.
Project description:Clinical trials with adaptive designs use data that accumulate during the course of the study to modify study elements in a prespecified manner. The goal is to provide flexibility such that a trial can serve as a definitive test of its primary hypothesis, preferably in a shorter time period, involving fewer human subjects, and at lower cost. Elements that may be modified include the sample size, end points, eligible population, randomization ratio, and interventions. Accumulating data used to drive these modifications include the outcomes, subject enrollment (including factors associated with the outcomes), and information about the application of the interventions. This review discusses the types of adaptive designs for clinical trials, emphasizing their advantages and limitations in comparison with conventional designs, and opportunities for applying these designs to healthcare epidemiology research, including studies of interventions to prevent healthcare-associated infections, combat antimicrobial resistance, and improve antimicrobial stewardship.
Project description:BackgroundAdaptive designs (ADs) are intended to make clinical trials more flexible, offering efficiency and potentially cost-saving benefits. Despite a large number of statistical methods in the literature on different adaptations to trials, the characteristics, advantages and limitations of such designs remain unfamiliar to large parts of the clinical and research community. This systematic review provides an overview of the use of ADs in published clinical trials (Part I). A follow-up (Part II) will compare the application of AD in trials in adult and pediatric studies, to provide real-world examples and recommendations for the child health community.MethodsPublished studies from 2010 to April 2020 were searched in the following databases: MEDLINE (Ovid), Embase (Ovid), and International Pharmaceutical Abstracts (Ovid). Clinical trial protocols, reports, and a secondary analyses using AD were included. We excluded trial registrations and interventions other than drugs or vaccines to align with regulatory guidance. Data from the published literature on study characteristics, types of adaptations, statistical analysis, stopping boundaries, logistical challenges, operational considerations and ethical considerations were extracted and summarized herein.ResultsOut of 23,886 retrieved studies, 317 publications of adaptive trials, 267 (84.2%) trial reports, and 50 (15.8%) study protocols), were included. The most frequent disease was oncology (168/317, 53%). Most trials included only adult participants (265, 83.9%),16 trials (5.4%) were limited to only children and 28 (8.9%) were for both children and adults, 8 trials did not report the ages of the included populations. Some studies reported using more than one adaptation (there were 390 reported adaptations in 317 clinical trial reports). Most trials were early in drug development (phase I, II (276/317, 87%). Dose-finding designs were used in the highest proportion of the included trials (121/317, 38.2 %). Adaptive randomization (53/317, 16.7%), with drop-the-losers (or pick-the-winner) designs specifically reported in 29 trials (9.1%) and seamless phase 2-3 design was reported in 27 trials (8.5%). Continual reassessment methods (60/317, 18.9%) and group sequential design (47/317, 14.8%) were also reported. Approximately two-thirds of trials used frequentist statistical methods (203/309, 64%), while Bayesian methods were reported in 24% (75/309) of included trials.ConclusionThis review provides a comprehensive report of methodological features in adaptive clinical trials reported between 2010 and 2020. Adaptation details were not uniformly reported, creating limitations in interpretation and generalizability. Nevertheless, implementation of existing reporting guidelines on ADs and the development of novel educational strategies that address the scientific, operational challenges and ethical considerations can help in the clinical trial community to decide on when and how to implement ADs in clinical trials. STUDY PROTOCOL REGISTRATION: https://doi.org/10.1186/s13063-018-2934-7 .
Project description:Adaptive designs have the potential to improve efficiency in the evaluation of new medical treatments in comparison to traditional fixed sample size designs. However, they are still not widely used in practice in clinical research. Little research has been conducted to investigate what adaptive designs are being undertaken. This review highlights the current state of registered adaptive designs and their characteristics. The review looked at phase II, II/III and III trials registered on ClinicalTrials.gov from 29 February 2000 to 1 June 2014, supplemented with trials from the National Institute for Health Research register and known adaptive trials. A range of adaptive design search terms were applied to the trials extracted from each database. Characteristics of the adaptive designs were then recorded including funder, therapeutic area and type of adaptation. The results in the paper suggest that the use of adaptive designs has increased. They seem to be most often used in phase II trials and in oncology. In phase III trials, the most popular form of adaptation is the group sequential design. The review failed to capture all trials with adaptive designs, which suggests that the reporting of adaptive designs, such as in clinical trials registers, needs much improving. We recommend that clinical trial registers should contain sections dedicated to the type and scope of the adaptation and that the term 'adaptive design' should be included in the trial title or at least in the brief summary or design sections.
Project description:'Multistage testing with adaptive designs' was the title of an article by Peter Bauer that appeared 1989 in the German journal Biometrie und Informatik in Medizin und Biologie. The journal does not exist anymore but the methodology found widespread interest in the scientific community over the past 25 years. The use of such multistage adaptive designs raised many controversial discussions from the beginning on, especially after the publication by Bauer and Köhne 1994 in Biometrics: Broad enthusiasm about potential applications of such designs faced critical positions regarding their statistical efficiency. Despite, or possibly because of, this controversy, the methodology and its areas of applications grew steadily over the years, with significant contributions from statisticians working in academia, industry and agencies around the world. In the meantime, such type of adaptive designs have become the subject of two major regulatory guidance documents in the US and Europe and the field is still evolving. Developments are particularly noteworthy in the most important applications of adaptive designs, including sample size reassessment, treatment selection procedures, and population enrichment designs. In this article, we summarize the developments over the past 25 years from different perspectives. We provide a historical overview of the early days, review the key methodological concepts and summarize regulatory and industry perspectives on such designs. Then, we illustrate the application of adaptive designs with three case studies, including unblinded sample size reassessment, adaptive treatment selection, and adaptive endpoint selection. We also discuss the availability of software for evaluating and performing such designs. We conclude with a critical review of how expectations from the beginning were fulfilled, and - if not - discuss potential reasons why this did not happen.
Project description:Simon's optimal two-stage design has been widely used in early phase clinical trials for Oncology and AIDS studies with binary endpoints. With this approach, the second-stage sample size is fixed when the trial passes the first stage with sufficient activity. Adaptive designs, such as those due to Banerjee and Tsiatis (2006) and Englert and Kieser (2013), are flexible in the sense that the second-stage sample size depends on the response from the first stage, and these designs are often seen to reduce the expected sample size under the null hypothesis as compared with Simon's approach. An unappealing trait of the existing designs is that they are not associated with a second-stage sample size, which is a non-increasing function of the first-stage response rate. In this paper, an efficient intelligent process, the branch-and-bound algorithm, is used in extensively searching for the optimal adaptive design with the smallest expected sample size under the null, while the type I and II error rates are maintained and the aforementioned monotonicity characteristic is respected. The proposed optimal design is observed to have smaller expected sample sizes compared to Simon's optimal design, and the maximum total sample size of the proposed adaptive design is very close to that from Simon's method. The proposed optimal adaptive two-stage design is recommended for use in practice to improve the flexibility and efficiency of early phase therapeutic development.
Project description:The COVID-19 pandemic has led to an unprecedented response in terms of clinical research activity. An important part of this research has been focused on randomized controlled clinical trials to evaluate potential therapies for COVID-19. The results from this research need to be obtained as rapidly as possible. This presents a number of challenges associated with considerable uncertainty over the natural history of the disease and the number and characteristics of patients affected, and the emergence of new potential therapies. These challenges make adaptive designs for clinical trials a particularly attractive option. Such designs allow a trial to be modified on the basis of interim analysis data or stopped as soon as sufficiently strong evidence has been observed to answer the research question, without compromising the trial's scientific validity or integrity. In this article, we describe some of the adaptive design approaches that are available and discuss particular issues and challenges associated with their use in the pandemic setting. Our discussion is illustrated by details of four ongoing COVID-19 trials that have used adaptive designs.