Unknown

Dataset Information

0

Determination of genetic relatedness from low-coverage human genome sequences using pedigree simulations.


ABSTRACT: We develop and evaluate methods for inferring relatedness among individuals from low-coverage DNA sequences of their genomes, with particular emphasis on sequences obtained from fossil remains. We suggest the major factors complicating the determination of relatedness among ancient individuals are sequencing depth, the number of overlapping sites, the sequencing error rate and the presence of contamination from present-day genetic sources. We develop a theoretical model that facilitates the exploration of these factors and their relative effects, via measurement of pairwise genetic distances, without calling genotypes, and determine the power to infer relatedness under various scenarios of varying sequencing depth, present-day contamination and sequencing error. The model is validated by a simulation study as well as the analysis of aligned sequences from present-day human genomes. We then apply the method to the recently published genome sequences of ancient Europeans, developing a statistical treatment to determine confidence in assigned relatedness that is, in some cases, more precise than previously reported. As the majority of ancient specimens are from animals, this method would be applicable to investigate kinship in nonhuman remains. The developed software grups (Genetic Relatedness Using Pedigree Simulations) is implemented in Python and freely available.

SUBMITTER: Martin MD 

PROVIDER: S-EPMC6485253 | biostudies-literature | 2017 Aug

REPOSITORIES: biostudies-literature

altmetric image

Publications

Determination of genetic relatedness from low-coverage human genome sequences using pedigree simulations.

Martin Michael D MD   Jay Flora F   Castellano Sergi S   Slatkin Montgomery M  

Molecular ecology 20170707 16


We develop and evaluate methods for inferring relatedness among individuals from low-coverage DNA sequences of their genomes, with particular emphasis on sequences obtained from fossil remains. We suggest the major factors complicating the determination of relatedness among ancient individuals are sequencing depth, the number of overlapping sites, the sequencing error rate and the presence of contamination from present-day genetic sources. We develop a theoretical model that facilitates the expl  ...[more]

Similar Datasets

| S-EPMC4896188 | biostudies-literature
| S-EPMC8553948 | biostudies-literature
| S-EPMC10445519 | biostudies-literature
| S-EPMC4143714 | biostudies-literature
| PRJEB31654 | ENA
| S-EPMC7654370 | biostudies-literature
| S-EPMC9843908 | biostudies-literature
| S-EPMC8510864 | biostudies-literature
| S-EPMC2596847 | biostudies-other
2015-10-15 | E-MTAB-3926 | biostudies-arrayexpress