Project description:Patients post total hip arthroplasty (THA) remain at high risk of developing Deep Vein Thrombosis (DVT) during the recovery period following surgery despite the availability of effective pharmacological and mechanical prophylactic methods. The use of calf muscle neuromuscular electrical stimulation (NMES) during the hospitalised recovery period on this patient group may be effective at preventing DVT. However, the haemodynamic effectiveness and comfort characteristics of NMES in post-THA patients immediately following surgery have yet to be established.The popliteal veins of 11 patients, who had undergone unilateral total hip replacement surgery on the day previous to the study, were measured using Doppler ultrasound during a 4 hour neuromuscular electrical stimulation (NMES) session of the calf muscles. The effect of calf muscle NMES on peak venous velocity, mean venous velocity and volume flow were compared to resting values. Comfort was assessed using a 100mm non-hatched visual analogue scale taken before application of NMES, once NMES was initiated and before NMES was withdrawn.In the operated limb NMES produced increases in peak venous velocity of 99% compared to resting. Mean velocity increased by 178% compared to resting and volume flow increased by 159% compared to resting. In the un-operated limb, peak venous velocity increased by 288%, mean velocity increased by 354% and volume flow increased by 614% compared to basal flow (p<0.05 in all cases). There were no significant differences observed between the VAS scores taken before the application of NMES, once NMES was initiated and before NMES was withdrawn (p=.211).NMES produces a beneficial hemodynamic response in patients in the early post-operative period following orthopaedic surgery. This patient group found extended periods of calf-muscle NMES tolerable.ClinicalTrials.gov NCT01785251.
Project description:Muscle is lost as part of the rectal cancer disease process. Surgery to treat rectal cancer and its subsequent immobility leads to increased muscle loss. Neuromuscular electrical stimulation (NMES) has been shown in previous studies in the critically ill to maintain muscle mass. The investigators aim to examine whether NMES use in the pre and postoperative setting preserves muscle mass, speeds up recovery and improves outcomes in advanced rectal cancer patients undergoing curative surgery. This is a phase II double blind randomised controlled clinical trial.
Project description:CONTEXT:Patellofemoral pain (PFP) is a chronic condition that presents with lower extremity muscle weakness, decreased flexibility, subjective functional limitations, pain, and decreased physical activity. Patterned electrical neuromuscular stimulation (PENS) has been shown to affect muscle activation and pain after a single treatment, but its use has not been studied in a rehabilitation trial. OBJECTIVE:To determine the effects of a 4-week impairment-based rehabilitation program using PENS on subjective function, pain, strength, range of motion, and physical activity in individuals with PFP. DESIGN:Randomized controlled trial. SETTING:Laboratory. PATIENTS OR OTHER PARTICIPANTS:A total of 21 patients with PFP (5 males, 16 females; age = 23.4 ± 7.6 years, height = 168.0 ± 7.5 cm, mass = 69.0 ± 19.5 kg). INTERVENTION(S):Participants completed a 4-week supervised rehabilitation program in conjunction with random assignment to receive PENS or sham treatments. MAIN OUTCOME MEASURE(S):Subjective function, pain, strength, range of motion, and physical activity levels were assessed prerehabilitation and postrehabilitation. Subjective function and pain were also assessed at 6 and 12 months postrehabilitation. Repeated-measures analyses of variance and Tukey post hoc testing were conducted with α ≤ .05. We calculated Cohen d effect sizes with 95% confidence intervals. RESULTS:Both groups had statistically and clinically meaningful differences in subjective function, pain, strength, range of motion, and activity level after 4 weeks of impairment-based rehabilitation. Improved subjective function was observed in both groups at 6 and 12 months after the interventions. The PENS group had improvements in current pain for all 3 postrehabilitation times compared with baseline measures. CONCLUSIONS:An impairment-based intervention effectively improved subjective function, pain, strength, range of motion, and physical activity levels in individuals with PFP. Participants who received PENS in addition to the rehabilitation program had improved current pain at 6 and 12 months postrehabilitation compared with baseline scores. TRIAL REGISTRATION:ClinicalTrials.gov identifier: NCT02441712.
Project description:BackgroundIt is a challenge to reduce the muscular discoordination in the paretic upper limb after stroke in the traditional rehabilitation programs.MethodIn this study, a neuromuscular electrical stimulation (NMES) and robot hybrid system was developed for multi-joint coordinated upper limb physical training. The system could assist the elbow, wrist and fingers to conduct arm reaching out, hand opening/grasping and arm withdrawing by tracking an indicative moving cursor on the screen of a computer, with the support from the joint motors and electrical stimulations on target muscles, under the voluntary intention control by electromyography (EMG). Subjects with chronic stroke (n = 11) were recruited for the investigation on the assistive capability of the NMES-robot and the evaluation of the rehabilitation effectiveness through a 20-session device assisted upper limb training.ResultsIn the evaluation, the movement accuracy measured by the root mean squared error (RMSE) during the tracking was significantly improved with the support from both the robot and NMES, in comparison with those without the assistance from the system (P < 0.05). The intra-joint and inter-joint muscular co-contractions measured by EMG were significantly released when the NMES was applied to the agonist muscles in the different phases of the limb motion (P < 0.05). After the physical training, significant improvements (P < 0.05) were captured by the clinical scores, i.e., Modified Ashworth Score (MAS, the elbow and the wrist), Fugl-Meyer Assessment (FMA), Action Research Arm Test (ARAT), and Wolf Motor Function Test (WMFT).ConclusionsThe EMG-driven NMES-robotic system could improve the muscular coordination at the elbow, wrist and fingers.Trial registrationClinicalTrials.gov. NCT02117089 ; date of registration: April 10, 2014.
Project description:PURPOSE:Concurrent neuromuscular electrical stimulation (NMES) involving sub-tetanic low frequency and tetanic high frequency which targets aerobic and muscular fitness is a potential alternative to conventional exercise in cancer rehabilitation. However, its safety and feasibility in patients with advanced cancer are unknown. The aim of this feasibility study was to determine safety and feasibility and evaluate changes in functional and health-related quality of life (HR-QoL) outcomes in individuals with advanced cancer and poor performance status after concurrent NMES. These results should help inform the design of future studies. METHODS:Participants with advanced cancer and poor performance status (Eastern Cooperative Oncology Group scale ??2) (n?=?18) were recruited. The intervention included a novel NMES intervention implemented over a 4-week period. Functional exercise capacity, lower limb muscle endurance and HR-QoL were measured by 6-min walk test (6MWT), 30-s sit-to-stand (30STS) and European Organization for Research and Treatment quality of life questionnaire core-30 (EORTC QLQ C30) pre and post-intervention. Participants unable to complete the 6-min walk test completed the timed up and go test. Participant experience and the impact of the intervention on daily life were investigated through semi-structured interviews. RESULTS:Ten of 18 participants completed the intervention. No adverse events were reported. Seven of 8 participants improved 6MWT performance (2 of 2 improved timed up and go), 8 of 10 participants improved 30STS and 8 of 10 participants improved Global quality of life. Perceived benefits included improved mobility and muscle strength. CONCLUSIONS:Neuromuscular electrical stimulation appears safe and feasible in advanced cancer and may improve physical and HR-QoL outcomes. Future prospective trials are warranted to confirm these findings prior to clinical implementation in an advanced cancer setting.
Project description:Facial neuromuscular electrical stimulation (NMES) is the application of an electrical current to the skin to induce muscle contractions and has enormous potential for basic research and clinical intervention in psychology and neuroscience. Because the technique remains largely unknown, and the prospect of receiving electricity to the face can be daunting, willingness to receive facial NMES is likely to be low and gender differences might exist in the amount of concern for the sensation of pain and skin burns. We investigated these questions in 182 healthy participants. The likelihood of taking part (LOTP) in a hypothetical facial NMES study was measured both before and after presenting a detailed vignette about facial NMES including its risks. Results showed that LOTP was generally high and that participants remained more likely to participate than not to, despite a decrease in LOTP after the detailed vignette. LOTP was significantly predicted by participants' previous knowledge about electrical stimulation and their tendency not to worry about the sensations of pain, and it was inversely related to concerns for burns and loss of muscle control. Fear of pain was also inversely related to LOTP, but its effect was mediated by the other concerns. We conclude that willingness to receive facial NMES is generally high across individuals in the studied age range (18-45) and that it is particularly important to reassure participants about facial NMES safety regarding burns and loss of muscle control. The findings are relevant for scholars considering using facial NMES in the laboratory.
Project description:Patellofemoral pain syndrome (PFPS) is a common musculoskeletal condition, particularly among women. Patients with PFPS usually experience weakness in the gluteal muscles, as well as pain and impaired motor control during activities of daily living. Strengthening the hip muscles is an effective way of treating this disorder. Neuromuscular training has also been identified as a therapeutic tool, although the benefits of this intervention in patients with PFPS patients remain inconclusive.This is a protocol of randomized controlled trial with a blind assessor. Thirty-four women with a clinical diagnosis of PFPS participated. These participants were allocated into two groups (experimental and control). The experimental group performed twelve sessions to strengthen the knee extensors, hip abductor and lateral rotator muscles in association with neuromuscular training of the trunk and lower extremities. The control group performed the same number of sessions to strengthen the muscles of the hip and knee. The primary outcome was functional capacity (Anterior Knee Pain Scale - AKPS) at 4 weeks. Pain intensity, muscle strength and kinematic changes were also measured during the step down test after four weeks of intervention. Follow up assessments were conducted after three and six months to assess functional capacity and pain. The effects of the treatment (i.e. between-group differences) were calculated using mixed linear models.The present study was initiated on the 1st of April 2013 and is currently in progress. The results of this study may introduce another effective technique of conservative treatment and could guide physical therapists in the clinical decision-making process for women with PFPS.Current Controlled Trials NCT01804608.
Project description:Neuromuscular electrical stimulation (NMES) applied to skeletal muscles is an effective rehabilitation and exercise training modality. However, the relatively low muscle force and rapid muscle fatigue induced by NMES limit the stimulus provided to the neuromuscular system and subsequent adaptations. We hypothesize that adaptations to NMES will be enhanced by the use of specific stimulation protocols and adjuvant interventions.
Project description:A 76-year-old man with opercular syndrome characterized by complete bilateral loss of voluntary control of facial, lingual, pharyngeal and masticatory muscles is presented with focus on the severe dysphagia. Three years earlier the patient had experienced two strokes resulting in opercular syndrome with severe dysphagia. Despite initial logopedic dysphagia treatment, swallowing did not improve. A new treatment for dysphagia, consisting of neuromuscular electrical stimulation was applied on the patient. He returned to oral feeding. Clinical and treatment observations are reported.
Project description:IntroductionSpinal cord injury (SCI) may cause impairments of the motor, sensory, and autonomic nervous systems, which result in adverse changes in body composition and cardiovascular health. Functional electrical stimulation (FES) cycling may provide an effective alternative approach to perform exercise and improve cardiovascular health after SCI. Persons with an injury at or above T6 level are at high risk of developing a life-threatening complication of autonomic dysreflexia (AD).Case presentationTwo participants with motor-complete C6 SCI completed either 12 weeks of passive range of motion or surface neuromuscular electrical stimulation (NMES) resistance training, followed by 12 weeks of functional electrical stimulation (FES) lower extremity cycling for both participants. Systolic and diastolic blood pressure (BP) were measured to determine the effects of NMES-resistance training and FES-lower extremity cycling during rest and exercise.DiscussionThe difference between mean value of BP during FES-lower extremity cycling exercise and resting BP averaged for 24 sessions was smaller for participant A (31.25?mmHg for systolic BP and 10.44?mmHg for diastolic BP), who received NMES-resistance training, as compared with participant B (58.62?mmHg for systolic BP and 35.07?mmHg for diastolic BP). The results of these case reports suggest that 12 weeks of NMES-resistance training preceding FES-lower extremity cycling may attenuate the development of AD after SCI. Risk of AD, triggered by noxious stimuli, may be dampened with FES-lower extremity cycling training in persons with SCI.