Unknown

Dataset Information

0

The Myo-inositol pathway does not contribute to ascorbic acid synthesis.


ABSTRACT: Ascorbic acid (AsA) biosynthesis in plants predominantly occurs via a pathway with d-mannose and l-galactose as intermediates. One alternative pathway for AsA synthesis, which is similar to the biosynthesis route in mammals, is controversially discussed for plants. Here, myo-inositol is cleaved to glucuronic acid and then converted via l-gulonate to AsA. In contrast to animals, plants have an effective recycling pathway for glucuronic acid, being a competitor for the metabolic rate. Recycling involves a phosphorylation at C1 by the enzyme glucuronokinase. Two previously described T-DNA insertion lines in the gene coding for glucuronokinase1 show wild type-like expression levels of the mRNA in our experiments and do not accumulate glucuronic acid in labelling experiments disproving that these lines are true knockouts. As suitable T-DNA insertion lines were not available, we generated frameshift mutations in the major expressed isoform glucuronokinase1 (At3g01640) to potentially redirect metabolites to AsA. However, radiotracer experiments with 3 H-myo-inositol revealed that the mutants in glucuronokinase1 accumulate only glucuronic acid and incorporate less metabolite into cell wall polymers. AsA was not labelled, suggesting that Arabidopsis cannot efficiently use glucuronic acid for AsA biosynthesis. All four mutants in glucuronokinase as well as the wild type have the same level of AsA in leaves.

SUBMITTER: Ivanov Kavkova E 

PROVIDER: S-EPMC6492119 | biostudies-literature | 2019 Jan

REPOSITORIES: biostudies-literature

altmetric image

Publications

The Myo-inositol pathway does not contribute to ascorbic acid synthesis.

Ivanov Kavkova E E   Blöchl C C   Tenhaken R R  

Plant biology (Stuttgart, Germany) 20180924


Ascorbic acid (AsA) biosynthesis in plants predominantly occurs via a pathway with d-mannose and l-galactose as intermediates. One alternative pathway for AsA synthesis, which is similar to the biosynthesis route in mammals, is controversially discussed for plants. Here, myo-inositol is cleaved to glucuronic acid and then converted via l-gulonate to AsA. In contrast to animals, plants have an effective recycling pathway for glucuronic acid, being a competitor for the metabolic rate. Recycling in  ...[more]

Similar Datasets

| S-EPMC7132880 | biostudies-literature
| S-EPMC7116374 | biostudies-literature
| S-EPMC5944130 | biostudies-literature
| S-EPMC3340000 | biostudies-literature
| S-EPMC1892220 | biostudies-literature
| S-EPMC7659177 | biostudies-literature
| S-EPMC1148343 | biostudies-other
| S-EPMC2781475 | biostudies-literature
| S-EPMC3851148 | biostudies-literature
| S-EPMC1951816 | biostudies-literature