Ontology highlight
ABSTRACT: Backgrounds and aims
Glioma accounts for the majority of primary malignant brain tumors in adults. Upregulation of microRNA-26a (miR-26a) has been observed in glioma. However, the biological function and molecular mechanism of miR-26a in glioma remain to be elucidated.Methods
Glioma cells stably overexpressing or down-expressing miR-26a were analyzed for both in vitro and in vivo biological functions. Novel target of miR-26a was identified by bioinformatics searching and molecular biological assays. Glioma specimens and normal brain tissues were analyzed for both expression levels of miR-26a and its target.Results
Forced expression of miR-26a in glioma cells significantly increased both growth rate and colony formation in vitro and tumor growth and angiogenesis in vivo, while reduced expression of miR-26a played opposite roles. MiR-26a directly targeted prohibitin (PHB) whose expression levels were downregulated in glioma specimens. The levels of miR-26a were inversely correlated with PHB expression levels in glioma samples and strongly correlated with clinical WHO grades of glioma.Conclusion
These results reveal that miR-26a regulates PHB and promotes glioma progression both in vitro and in vivo and that miR-26a and its target PHB are associated with glioma development, which can be helpful in developing microRNA-based treatment for glioma in the future.
SUBMITTER: Qian X
PROVIDER: S-EPMC6493457 | biostudies-literature | 2013 Oct
REPOSITORIES: biostudies-literature
Qian Xu X Zhao Peng P Li Wei W Shi Zhu-Mei ZM Wang Lin L Xu Qing Q Wang Min M Liu Ning N Liu Ling-Zhi LZ Jiang Bing-Hua BH
CNS neuroscience & therapeutics 20130722 10
<h4>Backgrounds and aims</h4>Glioma accounts for the majority of primary malignant brain tumors in adults. Upregulation of microRNA-26a (miR-26a) has been observed in glioma. However, the biological function and molecular mechanism of miR-26a in glioma remain to be elucidated.<h4>Methods</h4>Glioma cells stably overexpressing or down-expressing miR-26a were analyzed for both in vitro and in vivo biological functions. Novel target of miR-26a was identified by bioinformatics searching and molecula ...[more]