Project description:BackgroundLate-onset Pompe disease (LOPD) is a rare autosomal recessive disorder caused by mutations in the GAA gene, leading to progressive weakness of locomotor and respiratory muscles. Enzyme replacement therapy (ERT), administered every second week, has been proven to slow down disease progression and stabilize pulmonary function. Due to the COVID-19 pandemic in Germany, ERT was interrupted at our centre for 29 days. As reports on ERT discontinuation in LOPD are rare, our study aimed to analyse the impact of ERT interruption on the change in clinical outcome.MethodsWe performed a prospective cohort study in 12 LOPD patients. Clinical assessments were performed after ERT interruption and after the next three consecutive infusions. We assessed motor function by muscle strength testing, a 6-minute-walk-test, pulmonary function tests, and adverse events. For statistical analysis, an estimated baseline was calculated based on the individual yearly decline.ResultsThe mean time of ERT interruption was 49.42 days (SD ± 12.54). During ERT interruption, seven patients reported 14 adverse events and two of them were severe. Frequent symptoms were reduced muscle endurance/increased muscle fatigability and shortness of breath/worsening of breathing impairment. After ERT interruption, significant deterioration was found for MIP%pred (p = 0.026) and MRC%pred, as well as a trend to clinical deterioration in FVC%pred and the 6MWT%pred.ConclusionInterruption of ERT was associated with a deterioration in the core clinical outcome measures. Therefore, an interruption of ERT should be kept as short as possible.
Project description:We evaluated the prevalence of cardiovascular abnormalities and the efficacy and safety of enzyme replacement therapy in patients with late-onset Pompe disease.Ninety patients were randomized 2:1 to enzyme replacement therapy or placebo in a double-blinded protocol. Electrocardiograms and echocardiograms were obtained at baseline and scheduled intervals during the 78-week study period. Baseline cardiovascular abnormalities, and efficacy and safety of enzyme replacement therapy were described. Three pediatric patients were excluded.Eighty-seven patients were included. Median age was 44 years; 51% were men. At baseline, a short PR interval was present in 10%, 7% had decreased left ventricular systolic function, and 5% had elevated left ventricular mass on echocardiogram (all in mild range). There was no change in cardiovascular status associated with enzyme replacement therapy. No significant safety concerns related to enzyme replacement therapy were identified.Although some patients with late-onset Pompe disease had abnormalities on baseline electrocardiogram or echocardiogram, those classically seen in infantile Pompe disease, such as significant ventricular hypertrophy, were not noted. Cardiovascular parameters were not impacted by enzyme replacement therapy, and there were no cardiovascular safety concerns. The cardiovascular abnormalities identified may be related to Pompe disease or other comorbid conditions.
Project description:Mutations in the acidic alpha-glucosidase (GAA) coding gene cause Pompe disease. Late-onset Pompe disease (LOPD) is characterized by progressive proximal and axial muscle weakness and atrophy, causing respiratory failure. Enzyme replacement therapy (ERT), based on recombinant human GAA infusions, is the only available treatment; however, the efficacy of ERT is variable. Here we address the question whether proteins at variance in LOPD muscle of patients before and after 1 year of ERT, compared withhealthy age-matched subjects (CTR), reveal a specific signature. Proteins extracted from skeletal muscle of LOPD patients and CTR were analyzed by combining gel based (two-dimensional difference gel electrophoresis) and label-free (liquid chromatography-mass spectrometry) proteomic approaches, and ingenuity pathway analysis. Upstream regulators targeting autophagy and lysosomal tethering were assessed by immunoblotting. 178 proteins were changed in abundance in LOPD patients, 47 of them recovered normal level after ERT. Defects in oxidative metabolism, muscle contractile protein regulation, cytoskeletal rearrangement, and membrane reorganization persisted. Metabolic changes, ER stress and UPR (unfolded protein response) contribute to muscle proteostasis dysregulation with active membrane remodeling (high levels of LC3BII/LC3BI) and accumulation of p62, suggesting imbalance in the autophagic process. Active lysosome biogenesis characterizes both LOPD PRE and POST, unparalleled by molecules involved in lysosome tethering (VAMP8, SNAP29, STX17, and GORASP2) and BNIP3. In conclusion this study reveals a specific signature that suggests ERT prolongation and molecular targets to ameliorate patient's outcome.
Project description:Pompe disease (PD) is a glycogen storage disorder caused by deficient activity of acid alpha-glucosidase (GAA). We sought to review the latest available evidence on the safety and efficacy of recombinant human GAA enzyme replacement therapy (ERT) for late-onset PD (LOPD). We systematically searched the MEDLINE (via PubMed), Embase, and Cochrane databases for prospective clinical studies evaluating ERT for LOPD on pre-specified outcomes. A meta-analysis was also performed. Of 1601 articles identified, 22 were included. Studies were heterogeneous and with very low certainty of evidence for most outcomes. The following outcomes showed improvements associated with GAA ERT, over a mean follow-up of 32.5 months: distance walked in the 6-min walking test (6MWT) (mean change 35.7 m (95% confidence interval [CI] 7.78, 63.75)), physical domain of the SF-36 quality of life (QOL) questionnaire (mean change 1.96 (95% CI 0.33, 3.59)), and time on ventilation (TOV) (mean change -2.64 h (95% CI -5.28, 0.00)). There were no differences between the pre- and post-ERT period for functional vital capacity (FVC), Walton and Gardner-Medwin Scale score, upper-limb strength, or total SF-36 QOL score. Adverse events (AEs) after ERT were mild in most cases. Considering the limitations imposed by the rarity of PD, our data suggest that GAA ERT improves 6MWT, physical QOL, and TOV in LOPD patients. ERT was safe in the studied population. PROSPERO register: 135102.
Project description:Pompe disease (PD), also known as "glycogen storage disease type II (OMIM # 232300)" is a rare autosomal recessive disorder characterized by progressive glycogen accumulation in cellular lysosomes. It ultimately leads to cellular damage. Infantile-onset Pompe disease (IOPD) is the most severe type of this disease and is characterized by severe hypertrophic cardiomyopathy and generalized hypotonia. Mutations in the acid alpha-glucosidase (GAA) gene, located at locus 17q25.3, are responsible for the disease leading to reduced activity of the acid alpha-glucosidase enzyme. To date, approximately 400 pathogenic mutations have been reported in the GAA gene. The aim of this study is to report a novel nonsense mutation in exon 4 of the GAA gene in an Iranian child suffering from IOPD. The patient was a female neonate with hypertrophic cardiomyopathy and a positive family history of IOPD. After definite diagnosis, enzyme-replacement therapy (ERT) was started for the patient, who was 2 months old. Now at the age of 20 months, she has had good growth and development and her echocardiographic parameters are within the normal range. This report shows that IOPD patients with this mutation can be treated with ERT successfully.
Project description:BackgroundEarly initiation of enzyme replacement therapy (ERT) with recombinant human acid alpha-glucosidase is an effective treatment for patients with infantile-onset Pompe disease (IOPD) but cannot prevent a slow progression of myopathy. Albuterol has been shown to be helpful in adult patients with Pompe disease, and therefore, we administered an open-label adjunctive therapy with albuterol in IOPD patients undergoing ERT.MethodsFourteen patients, aged 2 to 12 years, were enrolled in this study; all of them had a disease onset before 12 months of life, and 13 of them were ambulatory because of early initiation of ERT. All patients received albuterol (also referred to as salbutamol) 12 mg daily for 26 weeks. The outcome measurements included a 6-minute walk test, four-stair climb test (SCT), the standing/walking/running/jumping domains of Gross Motor Function Measure-88, speech quality, serum creatine kinase, and urinary glucose tetrasaccharide. Outcome and safety measurements were evaluated at baseline, and at 1, 3, and 6 months (26 weeks) after entering the trial.ResultsAfter a period of 26 weeks, among the 12 patients who were able to complete the SCT, the median time needed decreased by 22% (p = 0.034). Other parameters inconsistently improved in a variety of individuals. Eleven adverse events, including nausea, urinary frequency, and tachycardia, were potentially related to the study drug, but all were mild and disappeared after a brief drug withdrawal. One patient was actively withdrawn from the trial because of poor compliance.ConclusionsThe results of our study suggest that albuterol showed a good safety profile as an adjunctive treatment in our IOPD cohort, although the benefits are limited.
Project description:IntroductionThe efficacy of enzyme replacement therapy (ERT) with alglucosidase alfa for infantile-onset Pompe disease (IOPD) is limited in some patients due to the development of high and sustained antibody titers (HSAT; ≥12,800).MethodsWe carried out detailed immunophenotyping of IOPD patients (n=40), including analysis of circulating cell populations by flow cytometry and plasma cytokines by multiplex array, to determine whether patients with HSAT have unique immunological characteristics compared to those with low titers (LT; <12,800).ResultsCompared to patients with LT, patients who develop HSAT were skewed toward a type 2 immune profile, with an increased frequency of Th2 cells that was positively correlated with levels of Th2 (IL-4, IL-5, IL-13) and pro-inflammatory (IL-6, TNF-α, MIP-1α, MIP-1β) cytokines. B cells were increased in HSAT patients with a decreased fraction of unswitched memory B cells. Plasma GM-CSF concentrations were lower on average in HSAT patients, while CXCL11 was elevated. Finally, using principal components analysis, we derived an HSAT Signature Score that successfully stratified patients according to their antibody titers.DiscussionThe immune profiles revealed in this study not only identify potential biomarkers of patients that developed HSAT but also provide insights into the pathophysiology of HSAT that will ultimately lead to improved immunotherapy strategies.
Project description:Pompe disease (PD) is an autosomal recessive lysosomal storage disorder caused by a deficiency of acid α-1,4-glucosidase enzyme (GAA). PD has two forms, namely the infantile-onset and the late-onset form. In untreated cases, infantile-onset form usually leads to cardio-respiratory failure and death in the first year of life. Herein, we report a newborn with infantile-onset PD characterized by muscular hypotonia, respiratory distress, hypertrophic cardiomyopathy, hepatomegaly, elevated serum enzyme levels of aspartate aminotransferase of 117 IU/L (three times the normal value), alanine aminotransferase of 66 IU/L (1.8 times the normal value), lactate dehydrogenase of 558 IU/L (1.2 times the normal value), and creatine kinase >5,000 IU/L (16 times the normal value). Dried blood spot testing was performed and revealed decreased GAA enzymatic activity (0.07 nmol/mL/h, normal 0.93-7.33 nmol/mL/h). GAA gene analysis performed for confirming the diagnosis showed homozygous mutation c.896T >C (p.Leu299Pro). Initiation of enzyme replacement therapy (ERT) (ERT; 20 mg/kg, once every week) at 28 days of age resulted in weaning off from respiratory support within 1 week after treatment, normalization of cardiac abnormalities, and normal neuromotor development in the 16th month of age. Early diagnosis and early treatment with ERT, especially in the neonatal period, is of great importance to improve cardiac function and motor development in infantile-onset PD.