Differential Effects of Breed and Nursing on Early-Life Colonic Microbiota and Immune Status as Revealed in a Cross-Fostering Piglet Model.
Ontology highlight
ABSTRACT: Nursing mother and breed can differently regulate early-life microbiota succession in pigs. However, it remains unclear whether they affect gastrointestinal microbiota and immune status, which are critical for early-life gut health. Here, an interspecific cross-fostering piglet model was employed by fostering neonatal Yorkshire and Meishan piglets to the same or another breed of sows. Jejunal and colonic microbiotas and mucosal immune parameters were analyzed at postnatal days 14 (preweaning) and 49 (postweaning). Nursing mother affected 10 genera in the colon and 3 minor genera in the jejunum. At day 14, Meishan sow-nursed piglets had lower Streptococcus suis and higher Cloacibacillus counts in the colonic digesta and larger amounts of interleukin 10 and Foxp3-positive cells in the colonic mucosa than did Yorkshire sow-nursed piglets. At day 49, nursing mother had no significant effects on cytokine expression. Breed effects were observed; Meishan piglets had lower relative abundances of Prevotella and lower gene expression of tumor necrosis factor alpha (TNF-?) than those of Yorkshire piglets at days 14 and 49. Collectively, nursing mother mainly affected preweaning colonic microbiota and immune status, while breed effects persisted after weaning. Piglets nursed by Meishan sows had different microbiota compositions and inflammatory cytokine profiles in the colon compared with those of piglets nursed by Yorkshire sows. These results highlight the different role of nursing mother and breed in affecting early gut microenvironment.IMPORTANCE Early-life gut microbiota and immune status are pivotal for postnatal growth. By using an interspecific cross-fostering piglet model, we find that change in nursing mother transiently reshapes preweaning colon microbiota and immune status, while breed shows persistent effects both pre- and postweaning. Piglets nursed by Meishan sows had lower Streptococcus suis counts and higher anti-inflammatory cytokine expression. These results highlight the significance of nursing mother in regulating early-life gut health.
SUBMITTER: Mu C
PROVIDER: S-EPMC6495758 | biostudies-literature | 2019 May
REPOSITORIES: biostudies-literature
ACCESS DATA