Unknown

Dataset Information

0

Thermodynamic investigation of DNA-binding affinity of wild-type and mutant transcription factor RUNX1.


ABSTRACT: Transcription factor RUNX1 and its binding partner CBF? play a critical role in gene regulation for hematopoiesis. Mutations of RUNX1 cause ~10% of acute myeloid leukemia (AML) with a particularly poor prognosis. The current paradigm for the leukemogenesis is that insufficient activity of wild-type (WT) RUNX1 impairs hematopoietic differentiation. The majority of mutant RUNX1 proteins lose the DNA-binding affinity and inhibit WT RUNX1 by depletion of CBF?. Here, isothermal titration calorimetry (ITC) was used to quantitatively study the interactions of WT and three clinical mutant RUNX1, CBF? and DNA. Our data show that the binding of RUNX1 to DNA is enthalpy-driven, and the affinity decreases in the order of WT > S114L > R139Q >> K83E, which support previous observations and conclusion. To find potentially beneficial RUNX1 mutations that could increase the overall RUNX1 activity, K83R and H179K mutations of RUNX1 were designed, using structure-based computational modeling, and found to possess significantly higher DNA-binding affinities than does WT RUNX1. K83R and H179K mutant RUNX1 could therefore be protein-based RUNX1 activators.

SUBMITTER: Wu F 

PROVIDER: S-EPMC6497270 | biostudies-literature | 2019

REPOSITORIES: biostudies-literature

altmetric image

Publications

Thermodynamic investigation of DNA-binding affinity of wild-type and mutant transcription factor RUNX1.

Wu Fangrui F   Song Tidie T   Yao Yuan Y   Song Yongcheng Y  

PloS one 20190502 5


Transcription factor RUNX1 and its binding partner CBFβ play a critical role in gene regulation for hematopoiesis. Mutations of RUNX1 cause ~10% of acute myeloid leukemia (AML) with a particularly poor prognosis. The current paradigm for the leukemogenesis is that insufficient activity of wild-type (WT) RUNX1 impairs hematopoietic differentiation. The majority of mutant RUNX1 proteins lose the DNA-binding affinity and inhibit WT RUNX1 by depletion of CBFβ. Here, isothermal titration calorimetry  ...[more]

Similar Datasets

| S-EPMC4643619 | biostudies-literature
| S-EPMC7999143 | biostudies-literature
| S-EPMC3102690 | biostudies-literature
| S-EPMC5694663 | biostudies-literature
| S-EPMC4838337 | biostudies-literature
2022-06-29 | GSE207001 | GEO
| S-EPMC6787930 | biostudies-literature