Unknown

Dataset Information

0

Cotton WATs Modulate SA Biosynthesis and Local Lignin Deposition Participating in Plant Resistance Against Verticillium dahliae.


ABSTRACT: Verticillium wilt, caused by Verticillium dahliae, seriously limits cotton production. It is difficult to control this pathogen damage mainly due to the complexity of the molecular mechanism of plant resistance to V. dahliae. Here, we identified three homologous cotton Walls Are Thin (WAT) genes, which were designated as GhWAT1, GhWAT2, and GhWAT3. The GhWATs were predominantly expressed in the roots, internodes, and hypocotyls and induced by infection with V. dahliae and treatment with indole-3-acetic acid (IAA) and salicylic acid (SA). GhWAT1-, GhWAT2-, or GhWAT3-silenced plants showed a comparable phenotype and level of resistance with control plants, but simultaneously silenced three GhWATs (GhWAT123-silenced), inhibited plant growth and increased plant resistance to V. dahliae, indicating that these genes were functionally redundant. In the GhWAT123-silenced plants, the expression of SA related genes was significantly upregulated compared with the control, resulting in an increase of SA level. Moreover, the histochemical analysis showed that xylem development was inhibited in GhWAT123-silenced plants compared with the control. However, lignin deposition increased in the xylem of the GhWAT123-silenced plants compared to the control, and there were higher expression levels of lignin synthesis- and lignifications-related genes in the GhWAT123-silenced plants. Collectively, the results showed that GhWATs in triple-silenced plants acts as negative regulators of plant resistance against V. dahliae. The potential mechanism of the WATs functioning in the plant defence can modulate the SA biosynthesis and lignin deposition in the xylem.

SUBMITTER: Tang Y 

PROVIDER: S-EPMC6499033 | biostudies-literature | 2019

REPOSITORIES: biostudies-literature

altmetric image

Publications

Cotton <i>WATs</i> Modulate SA Biosynthesis and Local Lignin Deposition Participating in Plant Resistance Against <i>Verticillium dahliae</i>.

Tang Ye Y   Zhang Zhennan Z   Lei Yu Y   Hu Guang G   Liu Jianfen J   Hao Mengyan M   Chen Aimin A   Peng Qingzhong Q   Wu Jiahe J  

Frontiers in plant science 20190426


Verticillium wilt, caused by <i>Verticillium dahliae</i>, seriously limits cotton production. It is difficult to control this pathogen damage mainly due to the complexity of the molecular mechanism of plant resistance to <i>V. dahliae</i>. Here, we identified three homologous cotton <i>Walls Are Thin</i> (<i>WAT</i>) genes, which were designated as <i>GhWAT1, GhWAT2</i>, and <i>GhWAT3.</i> The <i>GhWATs</i> were predominantly expressed in the roots, internodes, and hypocotyls and induced by infe  ...[more]

Similar Datasets

| S-EPMC8636836 | biostudies-literature
| S-EPMC6916341 | biostudies-literature
| S-EPMC6899791 | biostudies-literature
| S-EPMC492334 | biostudies-literature
| S-EPMC10826990 | biostudies-literature
| S-EPMC8486250 | biostudies-literature
| S-EPMC8353158 | biostudies-literature
| S-EPMC3878982 | biostudies-literature
| S-EPMC5978870 | biostudies-literature
| S-EPMC6844108 | biostudies-literature