Synthesis of Tripeptide Derivatives with Three Stereogenic Centers and Chiral Recognition Probed by Tetraaza Macrocyclic Chiral Solvating Agents Derived from d-Phenylalanine and (1 S,2 S)-(+)-1,2-Diaminocyclohexane via 1H NMR Spectroscopy.
Ontology highlight
ABSTRACT: Enantiomers of a series of tripeptide derivatives with three stereogenic centers (±)-G1-G9 have been prepared from d- and l-?-amino acids as guests for chiral recognition by 1H NMR spectroscopy. In the meantime, a family of tetraaza macrocyclic chiral solvating agents (TAMCSAs) 1a-1d has been synthesized from d-phenylalanine and (1 S,2 S)-(+)-1,2-diaminocyclohexane. Discrimination of enantiomers of (±)-G1-G9 was carried out in the presence of TAMCSAs 1a-1d by 1H NMR spectroscopy. The results indicate that enantiomers of (±)-G1-G9 can be effectively discriminated in the presence of TAMCSAs 1a-1d by 1H NMR signals of multiple protons exhibiting nonequivalent chemical shifts (???) up to 0.616 ppm. Furthermore, enantiomers of (±)-G1-G9 were easily assigned by comparing 1H NMR signals of the split corresponding protons with those attributed to a single enantiomer. Different optical purities (ee up to 90%) of G1 were clearly observed and calculated in the presence of TAMCSAs 1a-1d, respectively. Intermolecular hydrogen bonding interactions were demonstrated through theoretical calculations of enantiomers of (±)-G1 with TAMCSA 1a by means of the hybrid functional theory with the standard basis sets of 3-21G of the Gaussian 03 program.
SUBMITTER: Feng L
PROVIDER: S-EPMC6499380 | biostudies-literature | 2018 Nov
REPOSITORIES: biostudies-literature
ACCESS DATA