Unknown

Dataset Information

0

Brain transcriptome analysis of a familial Alzheimer's disease-like mutation in the zebrafish presenilin 1 gene implies effects on energy production.


ABSTRACT: To prevent or ameliorate Alzheimer's disease (AD) we must understand its molecular basis. AD develops over decades but detailed molecular analysis of AD brains is limited to postmortem tissue where the stresses initiating the disease may be obscured by compensatory responses and neurodegenerative processes. Rare, dominant mutations in a small number of genes, but particularly the gene PRESENILIN 1 (PSEN1), drive early onset of familial AD (EOfAD). Numerous transgenic models of AD have been constructed in mouse and other organisms, but transcriptomic analysis of these models has raised serious doubts regarding their representation of the disease state. Since we lack clarity regarding the molecular mechanism(s) underlying AD, we posit that the most valid approach is to model the human EOfAD genetic state as closely as possible. Therefore, we sought to analyse brains from zebrafish heterozygous for a single, EOfAD-like mutation in their PSEN1-orthologous gene, psen1. We previously introduced an EOfAD-like mutation (Q96_K97del) into the endogenous psen1 gene of zebrafish. Here, we analysed transcriptomes of young adult (6-month-old) entire brains from a family of heterozygous mutant and wild type sibling fish. Gene ontology (GO) analysis implies effects on mitochondria, particularly ATP synthesis, and on ATP-dependent processes including vacuolar acidification.

SUBMITTER: Newman M 

PROVIDER: S-EPMC6500017 | biostudies-literature | 2019 May

REPOSITORIES: biostudies-literature

altmetric image

Publications

Brain transcriptome analysis of a familial Alzheimer's disease-like mutation in the zebrafish presenilin 1 gene implies effects on energy production.

Newman Morgan M   Hin Nhi N   Pederson Stephen S   Lardelli Michael M  

Molecular brain 20190503 1


To prevent or ameliorate Alzheimer's disease (AD) we must understand its molecular basis. AD develops over decades but detailed molecular analysis of AD brains is limited to postmortem tissue where the stresses initiating the disease may be obscured by compensatory responses and neurodegenerative processes. Rare, dominant mutations in a small number of genes, but particularly the gene PRESENILIN 1 (PSEN1), drive early onset of familial AD (EOfAD). Numerous transgenic models of AD have been const  ...[more]

Similar Datasets

2019-02-06 | GSE126096 | GEO
| S-EPMC8604272 | biostudies-literature
| PRJNA521018 | ENA
| S-EPMC8564532 | biostudies-literature
2011-09-10 | GSE28379 | GEO
2011-09-09 | E-GEOD-28379 | biostudies-arrayexpress
| S-EPMC4567522 | biostudies-literature
| S-EPMC11247678 | biostudies-literature
| S-EPMC6201934 | biostudies-literature
| S-EPMC9613996 | biostudies-literature