Unknown

Dataset Information

0

Single-Trial Decoding of Scalp EEG under Natural Conditions.


ABSTRACT: There is significant current interest in decoding mental states from electroencephalography (EEG) recordings. EEG signals are subject-specific, are sensitive to disturbances, and have a low signal-to-noise ratio, which has been mitigated by the use of laboratory-grade EEG acquisition equipment under highly controlled conditions. In the present study, we investigate single-trial decoding of natural, complex stimuli based on scalp EEG acquired with a portable, 32 dry-electrode sensor system in a typical office setting. We probe generalizability by a leave-one-subject-out cross-validation approach. We demonstrate that support vector machine (SVM) classifiers trained on a relatively small set of denoised (averaged) pseudotrials perform on par with classifiers trained on a large set of noisy single-trial samples. We propose a novel method for computing sensitivity maps of EEG-based SVM classifiers for visualization of EEG signatures exploited by the SVM classifiers. Moreover, we apply an NPAIRS resampling framework for estimation of map uncertainty, and thus show that effect sizes of sensitivity maps for classifiers trained on small samples of denoised data and large samples of noisy data are similar. Finally, we demonstrate that the average pseudotrial classifier can successfully predict the class of single trials from withheld subjects, which allows for fast classifier training, parameter optimization, and unbiased performance evaluation in machine learning approaches for brain decoding.

SUBMITTER: Tuckute G 

PROVIDER: S-EPMC6501266 | biostudies-literature | 2019

REPOSITORIES: biostudies-literature

altmetric image

Publications

Single-Trial Decoding of Scalp EEG under Natural Conditions.

Tuckute Greta G   Hansen Sofie Therese ST   Pedersen Nicolai N   Steenstrup Dea D   Hansen Lars Kai LK  

Computational intelligence and neuroscience 20190417


There is significant current interest in decoding mental states from electroencephalography (EEG) recordings. EEG signals are subject-specific, are sensitive to disturbances, and have a low signal-to-noise ratio, which has been mitigated by the use of laboratory-grade EEG acquisition equipment under highly controlled conditions. In the present study, we investigate single-trial decoding of natural, complex stimuli based on scalp EEG acquired with a portable, 32 dry-electrode sensor system in a t  ...[more]

Similar Datasets

| S-EPMC3986521 | biostudies-literature
| S-EPMC3235148 | biostudies-literature
| S-EPMC4907687 | biostudies-literature
| S-EPMC8290181 | biostudies-literature
| S-EPMC5553928 | biostudies-other
| S-EPMC8285579 | biostudies-literature
| S-EPMC6401252 | biostudies-literature
| S-EPMC7200998 | biostudies-literature
| S-EPMC7438923 | biostudies-literature
| S-EPMC5992396 | biostudies-literature