Unknown

Dataset Information

0

Identification of an early cell fate regulator by detecting dynamics in transcriptional heterogeneity and co-regulation during astrocyte differentiation.


ABSTRACT: There are an increasing number of reports that characterize the temporal behavior of gene expression at the single-cell level during cell differentiation. Despite accumulation of data describing the heterogeneity of biological responses, the dynamics of gene expression heterogeneity and its regulation during the differentiation process have not been studied systematically. To understand transcriptional heterogeneity during astrocyte differentiation, we analyzed single-cell transcriptional data from cells representing the different stages of astrocyte differentiation. When we compared the transcriptional variability of co-expressed genes between the undifferentiated and differentiated states, we found that there was significant increase in transcriptional variability in the undifferentiated state. The genes showing large changes in both "variability" and "correlation" between neural stem cells (NSCs) and astrocytes were found to be functionally involved in astrocyte differentiation. We determined that these genes are potentially regulated by Ascl1, a previously known oscillatory gene in NSCs. Pharmacological blockade of Ntsr2, which is transcriptionally co-regulated with Ascl1, showed that Ntsr2 may play an important role in the differentiation from NSCs to astrocytes. This study shows the importance of characterizing transcriptional heterogeneity and rearrangement of the co-regulation network between different cell states. It also highlights the potential for identifying novel regulators of cell differentiation that will further increase our understanding of the molecular mechanisms underlying the differentiation process.

SUBMITTER: Ando T 

PROVIDER: S-EPMC6506553 | biostudies-literature | 2019

REPOSITORIES: biostudies-literature

altmetric image

Publications

Identification of an early cell fate regulator by detecting dynamics in transcriptional heterogeneity and co-regulation during astrocyte differentiation.

Ando Tatsuya T   Kato Ryuji R   Honda Hiroyuki H  

NPJ systems biology and applications 20190508


There are an increasing number of reports that characterize the temporal behavior of gene expression at the single-cell level during cell differentiation. Despite accumulation of data describing the heterogeneity of biological responses, the dynamics of gene expression heterogeneity and its regulation during the differentiation process have not been studied systematically. To understand transcriptional heterogeneity during astrocyte differentiation, we analyzed single-cell transcriptional data f  ...[more]

Similar Datasets

| S-EPMC2652435 | biostudies-literature
| S-EPMC3603518 | biostudies-other
| S-EPMC5161273 | biostudies-literature
| S-EPMC6275609 | biostudies-literature
| S-EPMC4642244 | biostudies-literature
| S-EPMC7608074 | biostudies-literature
| S-EPMC5919691 | biostudies-literature
| S-EPMC4862636 | biostudies-literature
| S-EPMC5934358 | biostudies-literature
| S-EPMC5554778 | biostudies-literature