Unknown

Dataset Information

0

Robust probabilistic classification applicable to irregularly sampled functional data.


ABSTRACT: A robust probabilistic classifier for functional data is developed to predict class membership based on functional input measurements and to provide a reliable probability estimates for class membership. The method combines a Bayes classifier and semi-parametric mixed effects model with robust tuning parameter to make the method robust to outlying curves, and to improve the accuracy of the risk or uncertainty estimates, which is crucial in medical diagnostic applications. The approach applies to functional data with varying ranges and irregular sampling without making parametric assumptions on the within-curve covariance. Simulation studies evaluate the proposed method and competitors in terms of sensitivity to heavy tailed functional distributions and outlying curves. Classification performance is evaluated by both error rate and logloss, the latter of which imposes heavier penalties on highly confident errors than on less confident errors. Runtime experiments on the R implementation indicate that the proposed method scales well computationally. Illustrative applications include data from quantitative ultrasound analysis and phoneme recognition.

SUBMITTER: Park Y 

PROVIDER: S-EPMC6510497 | biostudies-literature | 2019 Mar

REPOSITORIES: biostudies-literature

altmetric image

Publications

Robust probabilistic classification applicable to irregularly sampled functional data.

Park Yeonjoo Y   Simpson Douglas G DG  

Computational statistics & data analysis 20180811


A robust probabilistic classifier for functional data is developed to predict class membership based on functional input measurements and to provide a reliable probability estimates for class membership. The method combines a Bayes classifier and semi-parametric mixed effects model with robust tuning parameter to make the method robust to outlying curves, and to improve the accuracy of the risk or uncertainty estimates, which is crucial in medical diagnostic applications. The approach applies to  ...[more]

Similar Datasets

| S-EPMC4980099 | biostudies-literature
| S-EPMC3443537 | biostudies-literature
| S-EPMC7316691 | biostudies-literature
| S-EPMC8388030 | biostudies-literature
| S-EPMC3763208 | biostudies-literature
| S-EPMC10577400 | biostudies-literature
| S-EPMC9756087 | biostudies-literature
| S-EPMC5822039 | biostudies-literature
2018-06-20 | GSE111733 | GEO
| S-EPMC6107375 | biostudies-literature