Hydrogen bonding steers the product selectivity of electrocatalytic CO reduction.
Ontology highlight
ABSTRACT: The product selectivity of many heterogeneous electrocatalytic processes is profoundly affected by the liquid side of the electrocatalytic interface. The electrocatalytic reduction of CO to hydrocarbons on Cu electrodes is a prototypical example of such a process. However, probing the interactions of surface-bound intermediates with their liquid reaction environment poses a formidable experimental challenge. As a result, the molecular origins of the dependence of the product selectivity on the characteristics of the electrolyte are still poorly understood. Herein, we examined the chemical and electrostatic interactions of surface-adsorbed CO with its liquid reaction environment. Using a series of quaternary alkyl ammonium cations ([Formula: see text], [Formula: see text], [Formula: see text], and [Formula: see text]), we systematically tuned the properties of this environment. With differential electrochemical mass spectrometry (DEMS), we show that ethylene is produced in the presence of [Formula: see text] and [Formula: see text] cations, whereas this product is not synthesized in [Formula: see text]- and [Formula: see text]-containing electrolytes. Surface-enhanced infrared absorption spectroscopy (SEIRAS) reveals that the cations do not block CO adsorption sites and that the cation-dependent interfacial electric field is too small to account for the observed changes in selectivity. However, SEIRAS shows that an intermolecular interaction between surface-adsorbed CO and interfacial water is disrupted in the presence of the two larger cations. This observation suggests that this interaction promotes the hydrogenation of surface-bound CO to ethylene. Our study provides a critical molecular-level insight into how interactions of surface species with the liquid reaction environment control the selectivity of this complex electrocatalytic process.
SUBMITTER: Li J
PROVIDER: S-EPMC6511002 | biostudies-literature | 2019 May
REPOSITORIES: biostudies-literature
ACCESS DATA