Molecular characterization of two novel reoviruses isolated from Muscovy ducklings in Guangdong, China.
Ontology highlight
ABSTRACT: BACKGROUND:Novel Muscovy duck reovirus (N-MDRV), emerged in southeast China in 2002, which can infect a wide range of waterfowl and induces clinical signs and cytopathic effects that are distinct from those of classical MDRV, and continues to cause high morbidity and 5-50% mortality in ducklings. The present study aimed to investigate the characteristics of two novel reoviruses isolated from Muscovy ducklings in Guangdong, China. RESULTS:Two novel MDRV strains, designated as MDRV-SH12 and MDRV-DH13, were isolated from two diseased Muscovy ducklings in Guangdong province, China in June 2012 and September 2013, respectively. Sequencing of the complete genomes of these two viruses showed that they consisted of 23,418?bp and were divided into 10 segments, ranging from 1191?bp (S4) to 3959?bp (L1) in length, and all segments contained conserved sequences in the 5' non-coding region (GCUUUU) and 3' non-coding region (UCAUC). Pairwise sequence comparisons demonstrated that MDRV-SH12 and MDRV-DH13 showed the highest similarity with novel MDRVs. Phylogenetic analyses of the nucleotide sequences of all 10 segments revealed that MDRV-SH12 and MDRV-DH13 were clustered together with other novel waterfowl-origin reoviruses and were distinct from classical waterfowl-origin and chicken-origin reoviruses. The analyses also showed possible genetic re-assortment events in segment M2 between waterfowl-origin and chicken-origin reoviruses and the segments encoding ?A, ?A, ?NS, ?A, and ?NS between classical and novel waterfowl-origin reoviruses. Potential recombination events detection in segment S2 suggests that MDRV-SH12 and MDRV-DH13 may be recombinants of classical and novel WRVs. CONCLUSIONS:The results presented in this study, the full genomic data for two novel MDRV strains, will improve our understanding of the evolutionary relationships among the waterfowl-origin reoviruses circulating in China, and may aid in the development of more effective vaccines against various waterfowl-origin reoviruses.
SUBMITTER: Zhang XL
PROVIDER: S-EPMC6511161 | biostudies-literature | 2019 May
REPOSITORIES: biostudies-literature
ACCESS DATA