Project description:There are limited data on the prevalence and clinical and molecular characterization of human respiratory syncytial virus (HRSV) in children with acute respiratory tract infections (ARTIs) in China. From December 2006 to March 2009, 894 nasopharyngeal aspirates (NPAs) were collected from children under 14 years of age with ARTIs. Samples were screened for HRSV and genotyped by reverse transcription-PCR (RT-PCR) and sequencing. Demographic and clinical information was recorded. A total of 38.14% (341/894) of samples were positive for HRSV. Phylogenetic analysis revealed that 60.4% of the selected 227 RSV strains were GA2, 34.4% were BA, 4.8% were GB2, and 0.4% were GB3. A total of 40.47% of all of the RSV-positive samples were coinfected with other respiratory viruses, and adenovirus was the most common additional respiratory virus. No statistical differences were found in the frequency of diagnosis and symptoms between the coinfection group and monoinfection group. Additionally, no statistical differences were found in epidemiological characterizations or disease severity between genotype BA- and GA2-positive patients, except for a greater frequency of lower respiratory tract infections (LRTIs) (mostly bronchitis)with BA. HRSV is the most important viral pathogen in Chinese children with ARTIs. Four genotypes (i.e., GA2, BA, GB2, and GB3) circulate locally, and the predominant genotype may shift between seasons. Coinfection with other viruses does not affect disease severity. HRSV genotypes were not associated with different epidemiological characterizations or disease severity.
Project description:BACKGROUND:WU polyomavirus (WUPyV), a new member of the genus of Polyomavirus in the family Polyomaviridae, has been found and associated with respiratory tract infections recently. However, its clinical role and pathogenicity has not been known. OBJECTIVES:To confirm that WU polyomavirus has been found in Chinese children. STUDY DESIGN:WU polyomavirus was detected and identified using PCR methods. A total of 278 specimens of nasopharyngeal aspirate were collected, and then PCR products were sequenced directly. RESULTS:One of 278 nasopharyngeal aspirates was positive for WUPyV in one child, and the positive rate was 0.4%. The results showed that the sequences of genome, LTAg and VP2 gene was identical to the reference sequences of WU polyomavirus prototype strains. CONCLUSIONS:We confirmed that WU polyomavirus had been found and identified in the respiratory secretions in China.
Project description:Enterovirus 68 strains were detected in 14 specimens from children with respiratory tract infections and 1 specimen from a child with febrile convulsions during 2010 in Osaka, Japan. These strains had deletions in the 5' untranslated region and were genetically different from reported strains. This virus is associated with respiratory tract infections in Japan.
Project description:In order to improve clinical management and prevention of viral infections in hospitalised children improved etiological insight is needed. The aim of the present study was to assess the spectrum of respiratory viral pathogens in children admitted to hospital with acute respiratory tract infections in Cyprus. For this purpose nasopharyngeal swab samples from 424 children less than 12 years of age with acute respiratory tract infections were collected over three epidemic seasons and were analysed for the presence of the most common 15 respiratory viruses. A viral pathogen was identified in 86% of the samples, with multiple infections being observed in almost 20% of the samples. The most frequently detected viruses were RSV (30.4%) and Rhinovirus (27.4%). RSV exhibited a clear seasonality with marked peaks in January/February, while rhinovirus infections did not exhibit a pronounced seasonality being detected almost throughout the year. While RSV and PIV3 incidence decreased significantly with age, the opposite was observed for influenza A and B as well as adenovirus infections. The data presented expand our understanding of the epidemiology of viral respiratory tract infections in Cypriot children and will be helpful to the clinicians and researchers interested in the treatment and control of viral respiratory tract infections.
Project description:In South Korea, WU polyomavirus (WUPyV) was detected in 34 (7%) of 486 children with acute lower respiratory tract infections, 3 (4.2%) of 72 asymptomatic children, and as coinfection with other respiratory viruses in 23 (67.6%) children. Although WUPyV was frequently detected, its clinical role has not been distinguished from that of coinfecting viruses.
Project description:Molecular testing for acute respiratory infections (ARIs) has documented value but limited implementation due to questions that typically slow the acceptance of new tests. This study sought to address these questions and achieve implementation. Rhinovirus was added to a nested multiplex PCR (M-PCR), increasing its diagnostic yield. Over one winter, three hospital pediatric departments used the M-PCR to complement their direct fluorescent-antibody assay (DFA) for respiratory syncytial virus (RSV). Clinicians recorded "pretest probability estimates" (using continuous scales for various pathogen groups) for comparison with test results; treatments and test turnaround times were also recorded. Transnasal and throat swabs, with or without nasopharyngeal aspirate (NPA), were M-PCR tested. NPA-containing sample sets found to be RSV positive by DFA were not further tested. Single PCR for human metapneumovirus (hMPV) was performed retrospectively. Of 178 ARI episodes representing 172 patients, NPA was included in 97 sample sets; 54 (56%) were determined to be RSV positive. The other NPA-containing sample sets (n = 43) yielded 27 findings (63%), and the swab-only sets (n = 81) yielded 47 findings (58%); rhinovirus was found most often. Testing for hMPV yielded seven positive results. M-PCR median turnaround times were 4 days in swab-only samples and 5 days with NPA. Antibiotics were prescribed in 50 episodes, at rates similar for RSV and rhinovirus. Pretest probability estimates of a viral cause were lower in episodes caused by rhinovirus than in episodes caused by RSV. The hospitals continued to use M-PCR for NPA-containing samples found to be RSV negative by DFA. Test implementation is more likely with higher diagnostic yield and a protocol that reflects day-to-day clinical and laboratory operations.
Project description:BackgroundRespiratory syncytial virus (RSV) and influenza A viruses are known to cause severe acute respiratory tract infections (SARIs) in children. For other viruses like human rhinoviruses (HRVs) this is less well established. Viral or bacterial co-infections are often considered essential for severe manifestations of these virus infections.ObjectiveThe study aims at identifying viruses that may cause SARI in children in the absence of viral and bacterial co-infections, at identifying disease characteristics associated with these single virus infections, and at identifying a possible correlation between viral loads and disease severities.Study designBetween April 2007 and March 2012, we identified children (<18 year) with or without a medical history, admitted to our paediatric intensive care unit (PICU) with SARI or to the medium care (MC) with an acute respiratory tract infection (ARTI) (controls). Data were extracted from the clinical and laboratory databases of our tertiary care paediatric hospital. Patient specimens were tested for fifteen respiratory viruses with real-time reverse transcriptase PCR assays and we selected patients with a single virus infection only. Typical bacterial co-infections were considered unlikely to have contributed to the PICU or MC admission based on C-reactive protein-levels or bacteriological test results if performed.ResultsWe identified 44 patients admitted to PICU with SARI and 40 patients admitted to MC with ARTI. Twelve viruses were associated with SARI, ten of which were also associated with ARTI in the absence of typical bacterial and viral co-infections, with RSV and HRV being the most frequent causes. Viral loads were not different between PICU-SARI patients and MC-ARTI patients.ConclusionBoth SARI and ARTI may be caused by single viral pathogens in previously healthy children as well as in children with a medical history. No relationship between viral load and disease severity was identified.