Project description:Influenza virus infections affect millions of people annually, and current available vaccines provide varying rates of protection. However, the way in which the nasal microbiota, particularly established pneumococcal colonization, shape the response to influenza vaccination is not yet fully understood. In this study, we inoculated healthy adults with live Streptococcus pneumoniae and vaccinated them 3 days later with either tetravalent-inactivated influenza vaccine (TIV) or live attenuated influenza vaccine (LAIV). Vaccine-induced immune responses were assessed in nose, blood, and lung. Nasal pneumococcal colonization had no impact upon TIV-induced antibody responses to influenza, which manifested in all compartments. However, experimentally induced pneumococcal colonization dampened LAIV-mediated mucosal antibody responses, primarily IgA in the nose and IgG in the lung. Pulmonary influenza-specific cellular responses were more apparent in the LAIV group compared with either the TIV or an unvaccinated group. These results indicate that TIV and LAIV elicit differential immunity to adults and that LAIV immunogenicity is diminished by the nasal presence of S. pneumoniae. Therefore, nasopharyngeal pneumococcal colonization may affect LAIV efficacy.
Project description:Community interactions at mucosal surfaces between viruses, like influenza virus, and respiratory bacterial pathogens are important contributors toward pathogenesis of bacterial disease. What has not been considered is the natural extension of these interactions to live attenuated immunizations, and in particular, live attenuated influenza vaccines (LAIVs). Using a mouse-adapted LAIV against influenza A (H3N2) virus carrying the same mutations as the human FluMist vaccine, we find that LAIV vaccination reverses normal bacterial clearance from the nasopharynx and significantly increases bacterial carriage densities of the clinically important bacterial pathogens Streptococcus pneumoniae (serotypes 19F and 7F) and Staphylococcus aureus (strains Newman and Wright) within the upper respiratory tract of mice. Vaccination with LAIV also resulted in 2- to 5-fold increases in mean durations of bacterial carriage. Furthermore, we show that the increases in carriage density and duration were nearly identical in all aspects to changes in bacterial colonizing dynamics following infection with wild-type (WT) influenza virus. Importantly, LAIV, unlike WT influenza viruses, had no effect on severe bacterial disease or mortality within the lower respiratory tract. Our findings are, to the best of our knowledge, the first to demonstrate that vaccination with a live attenuated viral vaccine can directly modulate colonizing dynamics of important and unrelated human bacterial pathogens, and does so in a manner highly analogous to that seen following wild-type virus infection.Following infection with an influenza virus, infected or recently recovered individuals become transiently susceptible to excess bacterial infections, particularly Streptococcus pneumoniae and Staphylococcus aureus. Indeed, in the absence of preexisting comorbidities, bacterial infections are a leading cause of severe disease during influenza epidemics. While this synergy has been known and is well studied, what has not been explored is the natural extension of these interactions to live attenuated influenza vaccines (LAIVs). Here we show, in mice, that vaccination with LAIV primes the upper respiratory tract for increased bacterial growth and persistence of bacterial carriage, in a manner nearly identical to that seen following wild-type influenza virus infections. Importantly, LAIV, unlike wild-type virus, did not increase severe bacterial disease of the lower respiratory tract. These findings may have consequences for individual bacterial disease processes within the upper respiratory tract, as well as bacterial transmission dynamics within LAIV-vaccinated populations.
Project description:Purpose: Influenza virus infections affect millions of people annually. Current available vaccines provide varying rates of protection. There is a knowledge gap on how the nasal microbiota, particularly established pneumococcal colonization, shapes the response to influenza vaccination. Methods: In this study, we inoculated healthy adults with live S. pneumoniae and vaccinated them three days later with either TIV or LAIV. Vaccine-induced immune responses were assessed in nose, blood and lung. Results: Nasal pneumococcal colonization had no impact upon TIV-induced antibody responses to influenza, which manifested in all compartments. However, pre-existing pneumococcal colonization dampened LAIV-mediated mucosal antibody responses, primarily IgA in the nose and IgG in the lung. Pulmonary influenza-specific cellular responses were more apparent in the LAIV group compared to either TIV or an unvaccinated group. Conclusions: These results indicate that TIV and LAIV elicit differential immunity to adults and that LAIV immunogenicity is diminished by the nasal presence of S. pneumoniae. This important confounder should be considered when assessing LAIV efficacy.
Project description:Our studies aimed to evaluate in clinical trials the safety and immunogenicity of an H5 live influenza vaccine candidate obtained using classical reassortment techniques from a low pathogenicity avian influenza (LPAI) A/Duck/Potsdam/1402-6/86(H5N2) virus and the cold-adapted (ca) donor strain A/Leningrad/134/17/57(H2N2).During Phase I-II clinical trials, volunteers received intranasally two doses of reassortant influenza vaccine strain A/17/Duck/Potsdam/86/92 (H5N2) 21 days apart. Clinical examination of all vaccinees was conducted 7 days post-vaccination. Serum antibody responses were measured by hemagglutination-inhibition and microneutralization and local antibodies were estimated using an enzyme-linked immunosorbent assay test.The vaccine was safe and of low reactogenicity with no febrile reactions. After revaccination 47.1-54.8% of subjects showed > or =fourfold seroconversions of Hamagglutination inhibition (HAI) antibodies to the hemagglutinin (HA) antigen of the A/17/Duck/Potsdam/86/92 (H5N2) virus and 29.4-30.8% were seroconverted to the HA antigen of the reverse genetics reassortant A/Indonesia/05/2005 x PR8 IBCDC-RG (H5N1). Virus-neutralizing antibody levels in sera of volunteers were similar to those shown in HAI test. The virus-specific nasal IgA antibody response after two vaccine doses demonstrated significant increases of > or =fourfold rise SIgA antibodies (65%) geometrical mean titers (16.0) and a rise in SIgA antibodies (2.8) compared with one dose.The live attenuated influenza vaccine candidate prepared using the LPAI A(H5N2) strain was well tolerated and elicited serum and local immune responses. There was evident cross-reactivity to the A(H5N1) strain in the HAI test.
Project description:The safety, tolerability, and immunogenicity of a monovalent intranasal 2009 A/H1N1 live attenuated influenza vaccine (LAIV) were evaluated in children and adults.Two randomized, double-blind, placebo-controlled studies were completed in children (2-17 y) and adults (18-49 y). Subjects were assigned 4:1 to receive 2 doses of H1N1 LAIV or placebo 28 days apart. The primary safety endpoint was fever ?38.3°C during days 1-8 after the first dose; the primary immunogenicity endpoint was the proportion of subjects experiencing a postdose seroresponse. Solicited symptoms and adverse events were recorded for 14 days after each dose and safety data were collected for 180 days post-final dose. In total, 326 children (H1N1 LAIV, n?=?261; placebo, n?=?65) and 300 adults (H1N1 LAIV, n?=?240; placebo, n?=?60) were enrolled. After dose 1, fever ?38.3°C occurred in 4 (1.5%) pediatric vaccine recipients and 1 (1.5%) placebo recipient (rate difference, 0%; 95% CI: -6.4%, 3.1%). No adults experienced fever following dose 1. Seroresponse rates in children (H1N1 LAIV vs. placebo) were 11.1% vs. 6.3% after dose 1 (rate difference, 4.8%; 95% CI: -9.6%, 13.8%) and 32.0% vs. 14.5% after dose 2 (rate difference, 17.5%; 95% CI: 5.5%, 27.1%). Seroresponse rates in adults were 6.1% vs. 0% (rate difference, 6.1%; 95% CI: -5.6%, 12.6%) and 14.9% vs. 5.6% (rate difference, 9.3%; 95% CI: -0.8%, 16.3%) after dose 1 and dose 2, respectively. Solicited symptoms after dose 1 (H1N1 LAIV vs. placebo) occurred in 37.5% vs. 32.3% of children and 41.7% vs. 31.7% of adults. Solicited symptoms occurred less frequently after dose 2 in adults and children. No vaccine-related serious adverse events occurred.In subjects aged 2 to 49 years, two doses of H1N1 LAIV have a safety and immunogenicity profile similar to other previously studied and efficacious formulations of seasonal trivalent LAIV.ClinicalTrials.gov NCT00946101, NCT00945893.
Project description:Salmonellosis, caused by Salmonella Enteritidis, is a prevalent zoonosis that has serious consequences for human health and the development of the poultry sector. The Salmonella Enteritis live vaccine (Sm24/Rif12/Ssq strain) is used to prevent Salmonella Enteritidis around the world. However, in some parts of the world, poultry flocks are frequently raised under intensive conditions, with significant amounts of antimicrobials to prevent and treat disease and to promote growth. To investigate whether antibiotic use influences the colonization of orally administered Salmonella live vaccines, 240 1-day-old specific pathogen-free chicks were randomly divided into 24 groups of 10 animals for this study. The different groups were treated with different antibiotics, which included ceftiofur, amoxicillin, enrofloxacin, and lincomycin-spectinomycin. Each group was immunized 2, 3, 4, and 5 days after withdrawal, respectively. At 5 days after immunization, the blood, liver, and ceca with contents were collected for the isolation of the Salmonella live vaccine strain. The result showed that no Salmonella vaccine strain was isolated in the blood and liver of the chicks in those groups. The highest number of Salmonella vaccine strains was isolated in the cecum from chicks vaccinated 2 days after ceftiofur withdrawal, and no Salmonella vaccine strain was isolated from the cecum in chicks immunized 3 days after ceftiofur withdrawal. Among the chickens immunized 4 days after the withdrawal of amoxicillin, enrofloxacin, and lincomycin-spectinomycin, the number of Salmonella vaccine colonization in the cecum was the highest, which was higher than that of the chickens immunized at other withdrawal interval (2, 3, and 5 days) groups and was higher than that of the chickens without treatment (P < 0.05). This study provides a reference for the effective use of the Salmonella Enteritidis live vaccine and key antibiotics commonly utilized in the poultry industry.
Project description:Compared to intramuscular vaccines, nasally administered vaccines have the advantage of inducing local mucosal immune responses that may block infection and interrupt transmission of respiratory pathogens1. Live attenuated influenza vaccine (LAIV) is commonly used in children2, but its effectiveness declines with age3. This may be attributed to the gradual accumulation of homo- or hetero-subtypic immunity that blocks vaccine replication necessary to induce protective responses3, 4. Despite its demonstrable efficacy against influenza in children, correlates of protection for LAIV remain elusive5. Studying young adult volunteers we found that LAIV induced distinct, compartmentalized, antibody responses in the mucosa and blood. LAIV also induced mucosal IL-33 release in the first 8 hours post-inoculation and distinct CD8+ and cTfh T cell activation profiles. Mucosal antibodies are induced separately from blood antibodies and may provide a simple and novel correlate of protection for mucosal vaccination.
Project description:The goal of this study was to identify differentially expressed genes between pre-vaccination and day 2 post-vaccination with LAIV in children aged 2 - 4 years old who seroconvert to LAIV. Seroconversion was defined as a 4-fold rise in haemagglutination inhibition titre between baseline and day 21 following vaccination.
Project description:BACKGROUND:Few observational studies have evaluated the relative effectiveness of live attenuated (LAIV) and inactivated (IIV) influenza vaccines against medically attended laboratory-confirmed influenza. METHODS:We analyzed US Influenza Vaccine Effectiveness Network data from participants aged 2 to 17 years during 4 seasons (2010-2011 through 2013-2014) to compare relative effectiveness of LAIV and IIV against influenza-associated illness. Vaccine receipt was confirmed via provider/electronic medical records or immunization registry. We calculated the ratio (odds) of influenza-positive to influenza-negative participants among those age-appropriately vaccinated with either LAIV or IIV for the corresponding season. We examined relative effectiveness of LAIV and IIV by using adjusted odds ratios (ORs) and 95% confidence intervals (CIs) from logistic regression. RESULTS:Of 6819 participants aged 2 to 17 years, 2703 were age-appropriately vaccinated with LAIV (n = 637) or IIV (n = 2066). Odds of influenza were similar for LAIV and IIV recipients during 3 seasons (2010-2011 through 2012-2013). In 2013-2014, odds of influenza were significantly higher among LAIV recipients compared with IIV recipients 2 to 8 years old (OR 5.36; 95% CI, 2.37 to 12.13). Participants vaccinated with LAIV or IIV had similar odds of illness associated with influenza A/H3N2 or B. LAIV recipients had greater odds of illness due to influenza A/H1N1pdm09 in 2010-2011 and 2013-2014. CONCLUSIONS:We observed lower effectiveness of LAIV compared with IIV against influenza A/H1N1pdm09 but not A(H3N2) or B among children and adolescents, suggesting poor performance related to the LAIV A/H1N1pdm09 viral construct.
Project description:INTRODUCTION:Decreased live attenuated influenza vaccine (LAIV) effectiveness in the U.S. prompted the Advisory Committee on Immunization Practices in August 2016 to recommend against this vaccine's use. However, overall influenza uptake increases when LAIV is available and, unlike the U.S., LAIV has retained its effectiveness in other countries. These opposing countercurrents create a dilemma. METHODS:To examine the potential consequences of the decision to not recommend LAIV, which may result in decreased influenza vaccination coverage in the U.S. population, a Markov decision analysis model was used to examine influenza vaccination options in U.S. children aged 2-8 years. Data were compiled and analyzed in 2016. RESULTS:Using recently observed low LAIV effectiveness values, fewer influenza cases will occur if LAIV is not used compared with having LAIV as a vaccine option. However, having the option to use LAIV may be favored if LAIV effectiveness returns to prior levels or if the absence of vaccine choice substantially decreases overall vaccine uptake. CONCLUSIONS:Continued surveillance of LAIV effectiveness and influenza vaccine uptake is warranted, given their importance in influenza vaccination policy decisions.