Project description:Background: Systemic inflammation is a whole body reaction that can have an infection-positive (i.e. sepsis) or infection-negative origin. It is important to distinguish between septic and non-septic presentations early and reliably, because this has significant therapeutic implications for critically ill patients. We hypothesized that a molecular classifier based on a small number of RNAs expressed in peripheral blood could be discovered that would: 1) determine which patients with systemic inflammation had sepsis; 2) be robust across independent patient cohorts; 3) be insensitive to disease severity; and 4) provide diagnostic utility. The overall goal of this study was to identify and validate such a molecular classifier. Methods and Findings: We conducted an observational, non-interventional study of adult patients recruited from tertiary intensive care units (ICU). Biomarker discovery was conducted with an Australian cohort (n = 105) consisting of sepsis patients and post -surgical patients with infection-negative systemic inflammation. Using this cohort, a four-gene classifier consisting of a combination of CEACAM4, LAMP1, PLA2G7 and PLAC8 RNA biomarkers was identified. This classifier, designated SeptiCyte® Lab, was externally validated using RT-qPCR and receiver operating characteristic (ROC) curve analysis in five cohorts (n = 345) from the Netherlands. Cohort 1 (n=59) consisted of unambiguous septic cases and infection-negative systemic inflammation controls; SeptiCyte® Lab gave an area under curve (AUC) of 0.96 (95% CI: 0.91-1.00). ROC analysis of a more heterogeneous group of patients (Cohorts 2-5; 249 patients after excluding 37 patients with infection likelihood possible) gave an AUC of 0.89 (95% CI: 0.85-0.93). Disease severity, as measured by Sequential Organ Failure Assessment (SOFA) score or the Acute Physiology and Chronic Health Evaluation (APACHE) IV score, was not a significant confounding variable. The diagnostic utility o f SeptiCyte® Lab was evaluated by comparison to various clinical and laboratory parameters that would be available to a clinician within 24 hours of ICU admission. SeptiCyte® Lab was significantly better at differentiating sepsis from infection-negative systemic inflammation than all tested parameters, both singly and in various logistic combinations. SeptiCyte® Lab more than halved the diagnostic error rate compared to PCT in all tested cohorts or cohort combinations. Conclusions: SeptiCyte® Lab is a rapid molecular assay that may be clinically useful in the management of ICU patients with systemic inflammation. SIRS and Sepsis ICU patients, admission samples Retrospective, mutli-site sutdy using retrospective physician adjudication as a comparator
Project description:Background: Systemic inflammation is a whole body reaction that can have an infection-positive (i.e. sepsis) or infection-negative origin. It is important to distinguish between septic and non-septic presentations early and reliably, because this has significant therapeutic implications for critically ill patients. We hypothesized that a molecular classifier based on a small number of RNAs expressed in peripheral blood could be discovered that would: 1) determine which patients with systemic inflammation had sepsis; 2) be robust across independent patient cohorts; 3) be insensitive to disease severity; and 4) provide diagnostic utility. The overall goal of this study was to identify and validate such a molecular classifier. Methods and Findings: We conducted an observational, non-interventional study of adult patients recruited from tertiary intensive care units (ICU). Biomarker discovery was conducted with an Australian cohort (n = 105) consisting of sepsis patients and post -surgical patients with infection-negative systemic inflammation. Using this cohort, a four-gene classifier consisting of a combination of CEACAM4, LAMP1, PLA2G7 and PLAC8 RNA biomarkers was identified. This classifier, designated SeptiCyte® Lab, was externally validated using RT-qPCR and receiver operating characteristic (ROC) curve analysis in five cohorts (n = 345) from the Netherlands. Cohort 1 (n=59) consisted of unambiguous septic cases and infection-negative systemic inflammation controls; SeptiCyte® Lab gave an area under curve (AUC) of 0.96 (95% CI: 0.91-1.00). ROC analysis of a more heterogeneous group of patients (Cohorts 2-5; 249 patients after excluding 37 patients with infection likelihood possible) gave an AUC of 0.89 (95% CI: 0.85-0.93). Disease severity, as measured by Sequential Organ Failure Assessment (SOFA) score or the Acute Physiology and Chronic Health Evaluation (APACHE) IV score, was not a significant confounding variable. The diagnostic utility o f SeptiCyte® Lab was evaluated by comparison to various clinical and laboratory parameters that would be available to a clinician within 24 hours of ICU admission. SeptiCyte® Lab was significantly better at differentiating sepsis from infection-negative systemic inflammation than all tested parameters, both singly and in various logistic combinations. SeptiCyte® Lab more than halved the diagnostic error rate compared to PCT in all tested cohorts or cohort combinations. Conclusions: SeptiCyte® Lab is a rapid molecular assay that may be clinically useful in the management of ICU patients with systemic inflammation. SIRS and Sepsis ICU patients, admission samples
Project description:Objective:To develop and validate a multivariable prediction model for insulin-associated hypoglycemia in non-critically ill hospitalized adults. Research design and methods:We collected pharmacologic, demographic, laboratory, and diagnostic data from 128?657 inpatient days in which at least 1 unit of subcutaneous insulin was administered in the absence of intravenous insulin, total parenteral nutrition, or insulin pump use (index days). These data were used to develop multivariable prediction models for biochemical and clinically significant hypoglycemia (blood glucose (BG) of ?70?mg/dL and <54?mg/dL, respectively) occurring within 24?hours of the index day. Split-sample internal validation was performed, with 70% and 30% of index days used for model development and validation, respectively. Results:Using predictors of age, weight, admitting service, insulin doses, mean BG, nadir BG, BG coefficient of variation (CVBG), diet status, type 1 diabetes, type 2 diabetes, acute kidney injury, chronic kidney disease (CKD), liver disease, and digestive disease, our model achieved a c-statistic of 0.77 (95% CI 0.75 to 0.78), positive likelihood ratio (+LR) of 3.5 (95% CI 3.4 to 3.6) and negative likelihood ratio (-LR) of 0.32 (95% CI 0.30 to 0.35) for prediction of biochemical hypoglycemia. Using predictors of sex, weight, insulin doses, mean BG, nadir BG, CVBG, diet status, type 1 diabetes, type 2 diabetes, CKD stage, and steroid use, our model achieved a c-statistic of 0.80 (95% CI 0.78 to 0.82), +LR of 3.8 (95% CI 3.7 to 4.0) and -LR of 0.2 (95% CI 0.2 to 0.3) for prediction of clinically significant hypoglycemia. Conclusions:Hospitalized patients at risk of insulin-associated hypoglycemia can be identified using validated prediction models, which may support the development of real-time preventive interventions.
Project description:Hyperglycemia frequently occurs with acute medical illness, especially among patients with cardiovascular disease, and has been linked to increased morbidity and mortality in critically ill patients. Even patients who are normoglycemic can develop hyperglycemia in response to acute metabolic stress. An expanding body of literature describes the benefits of normalizing hyperglycemia with insulin therapy in hospitalized patients. As a result, both the American Diabetes Association and the American College of Endocrinology have developed guidelines for optimal control of hyperglycemia, specifically targeting critically ill, hospitalized patients. Conventional blood glucose values of 140-180 mg/dL are considered desirable and safely achievable in most patients. More aggressive control to <110 mg/dL remains controversial, but has shown benefits in certain patients, such as those in surgical intensive care. Intravenous infusion is often used for initial insulin administration, which can then be transitioned to subcutaneous insulin therapy in those patients who require continued insulin maintenance. This article reviews the data establishing the link between hyperglycemia and its risks of morbidity and mortality, and describes strategies that have proven effective in maintaining glycemic control in high-risk hospitalized patients.
Project description:IntroductionThis was a planned substudy from the European observational Sepsis Occurrence in Acutely ill Patients (SOAP) study to investigate the possible impact of insulin-treated diabetes on morbidity and mortality in ICU patients.MethodsThe SOAP study was a cohort, multicenter, observational study which included data from all adult patients admitted to one of 198 participating ICUs from 24 European countries during the study period. For this substudy, patients were classified according to whether or not they had a known diagnosis of insulin-treated diabetes mellitus. Outcome measures included the degree of organ dysfunction/failure as assessed by the sequential organ failure assessment (SOFA) score, the occurrence of sepsis syndromes and organ failure in the ICU, hospital and ICU length of stay, and all cause hospital and ICU mortality.ResultsOf the 3147 patients included in the SOAP study, 226 (7.2%) had previously diagnosed insulin-treated diabetes mellitus. On admission, patients with insulin-treated diabetes were older, sicker, as reflected by higher simplified acute physiology system II (SAPS II) and SOFA scores, and more likely to be receiving hemodialysis than the other patients. During the ICU stay, more patients with insulin-treated diabetes required renal replacement therapy (hemodialysis or hemofiltration) than other patients. There were no significant differences in ICU or hospital lengths of stay or in ICU or hospital mortality between patients with or without insulin-treated diabetes. Using a Cox proportional hazards regression analysis with hospital mortality censored at 28-days as the dependent factor, insulin-treated diabetes was not an independent predictor of mortality.ConclusionsEven though patients with a history of insulin-treated diabetes are more severely ill and more likely to have renal failure, insulin-treated diabetes is not associated with increased mortality in ICU patients.
Project description:Background and aimThe coronavirus disease 2019 (COVID-19) outbreak has rapidly crossed international boundaries and placed increasing demands on healthcare facilities worldwide. Patients with diabetes and uncontrolled blood glucose levels are at increased risk for poor clinical outcomes and in-hospital mortality related to COVID-19. Therefore, achieving good glycaemic control is of paramount importance among hospitalised patients with COVID-19. Basal-bolus insulin therapy is a safe and effective intervention for the management of hyperglycaemia in hospitalised patients. The aim of this article is to provide a practical guidance for the use of the basal-bolus insulin regimen in hospitalised patients with COVID-19 and diabetes mellitus.MethodsThis guidance document was formulated based on the review of available literature and the combined personal experiences of the authors. We provide a comprehensive review on the use of the basal-bolus insulin regimen, including its principles, rationale, indications, prerequisites, initiation, and dose titration, and also suggest targets for blood glucose control and different levels of capillary blood glucose monitoring. Various case scenarios are used to illustrate how optimal glucose control can be achieved, such as through adjustments in doses of prandial and basal insulin, the use of correctional insulin dosing and changes in the timing and content of major and minor meals.ConclusionThe practical guidance for the use of the basal-bolus insulin regimen in hospitalised patients with COVID-19 and diabetes mellitus presented here can be used for patients admitted to hospital for indications other than COVID-19 and for those in ambulatory care.
Project description:Oxygen supplementation is one of the most common interventions in critically ill patients. Despite over a century of data suggesting both beneficial and detrimental effects of supplemental oxygen, optimal arterial oxygenation targets in adult patients remain unclear. Laboratory animal studies have consistently showed that exposure to a high FiO2 causes respiratory failure and early death. Human autopsy studies from the 1960s purported to provide histologic evidence of pulmonary oxygen toxicity in the form of diffuse alveolar damage. However, concomitant ventilator-induced lung injury and/or other causes of acute lung injury may explain these findings. Although some observational studies in general populations of critically adults showed higher mortality in association with higher oxygen exposures, this finding has not been consistent. For some specific populations, such as those with cardiac arrest, studies have suggested harm from targeting supraphysiologic PaO2 levels. More recently, randomized clinical trials of arterial oxygenation targets in narrower physiologic ranges were conducted in critically ill adult patients. Although two smaller trials came to opposite conclusions, the two largest of these trials showed no differences in clinical outcomes in study groups that received conservative versus liberal oxygen targets, suggesting that either strategy is reasonable. It is possible that some strategies are of benefit in some subpopulations, and this remains an important ongoing area of research. Because of the ubiquity of oxygen supplementation in critically ill adults, even small treatment effects could have a large impact on a global scale.
Project description:The prevalence of microalbuminuria was assessed in 50 patients of non-insulin dependent diabetes mellitus. The mean age of patients was 52.1 ± 11.6 years and the duration of diabetes was 8.3 ± 6.8 years. Twenty (40%) patients had microalbuminuria. Microalbuminuria was more common in patients with a longer duration of diabetes (more than 5 years), a poor glycaemic control, and higher systolic blood pressure.
Project description:Extracorporeal life support (ECLS) has become increasingly popular as a salvage strategy for critically ill adults. Major advances in technology and the severe acute respiratory distress syndrome that characterized the 2009 influenza A(H1N1) pandemic have stimulated renewed interest in the use of venovenous extracorporeal membrane oxygenation (ECMO) and extracorporeal carbon dioxide removal to support the respiratory system. Theoretical advantages of ECLS for respiratory failure include the ability to rest the lungs by avoiding injurious mechanical ventilator settings and the potential to facilitate early mobilization, which may be advantageous for bridging to recovery or to lung transplantation. The use of venoarterial ECMO has been expanded and applied to critically ill adults with hemodynamic compromise from a variety of etiologies, beyond postcardiotomy failure. Although technology and general care of the ECLS patient have evolved, ECLS is not without potentially serious complications and remains unproven as a treatment modality. The therapy is now being tested in clinical trials, although numerous questions remain about the application of ECLS and its impact on outcomes in critically ill adults.