Unknown

Dataset Information

0

The sintering temperature effect on electrochemical properties of Ce0.8Sm0.05Ca0.15O2-? (SCDC)-La0.6Sr0.4Co0.2Fe0.8O3-? (LSCF) heterostructure pellet.


ABSTRACT: Recently, semiconductor-ionic materials (SIMs) have emerged as new functional materials, which possessed high ionic conductivity with successful applications as the electrolyte in advanced low-temperature solid oxide fuel cells (LT-SOFCs). In order to reveal the ion-conducting mechanism in SIM, a typical SIM pellet consisted of semiconductor La0.6Sr0.4Co0.2Fe0.8O3-? (LSCF) and ionic conductor Sm and Ca Co-doped ceria Ce0.8Sm0.05Ca0.15O2-? (SCDC) are suffered from sintering at different temperatures. It has been found that the performance of LSCF-SCDC electrolyte fuel cell decreases with the sintering temperature, the cell assembled from LSCF-SCDC pellet sintered at 600 °C exhibits a peak power density (Pmax) of 543?mW/cm2 at 550 °C and also excellent performance of 312?mW/cm2 even at LT (500 °C). On the contrary, devices based on 1000 °C pellet presented a poor Pmax of 106?mW/cm2. The performance difference may result from the diverse ionic conductivity of SIM pellet through different temperatures sintering. The high-temperature sintering could severely destroy the interface between SCDC and LSCF, which provide fast transport pathways for oxygen ions conduction. Such phenomenon provides direct and strong evidence for the interfacial conduction in LSCF-SCDC SIMs.

SUBMITTER: Nie X 

PROVIDER: S-EPMC6517467 | biostudies-literature | 2019 May

REPOSITORIES: biostudies-literature

altmetric image

Publications

The sintering temperature effect on electrochemical properties of Ce<sub>0.8</sub>Sm<sub>0.05</sub>Ca<sub>0.15</sub>O<sub>2-δ</sub> (SCDC)-La<sub>0.6</sub>Sr<sub>0.4</sub>Co<sub>0.2</sub>Fe<sub>0.8</sub>O<sub>3-δ</sub> (LSCF) heterostructure pellet.

Nie Xiyu X   Chen Ying Y   Mushtaq Naveed N   Rauf Sajid S   Wang Baoyuan B   Dong Wenjing W   Wang Xunying X   Wang Hao H   Zhu Bin B  

Nanoscale research letters 20190514 1


Recently, semiconductor-ionic materials (SIMs) have emerged as new functional materials, which possessed high ionic conductivity with successful applications as the electrolyte in advanced low-temperature solid oxide fuel cells (LT-SOFCs). In order to reveal the ion-conducting mechanism in SIM, a typical SIM pellet consisted of semiconductor La<sub>0.6</sub>Sr<sub>0.4</sub>Co<sub>0.2</sub>Fe<sub>0.8</sub>O<sub>3-δ</sub> (LSCF) and ionic conductor Sm and Ca Co-doped ceria Ce<sub>0.8</sub>Sm<sub>0  ...[more]

Similar Datasets

| S-EPMC9190786 | biostudies-literature
| S-EPMC5095711 | biostudies-literature
| S-EPMC5357953 | biostudies-literature
| S-EPMC7756629 | biostudies-literature
| S-EPMC11352757 | biostudies-literature
| S-EPMC8395632 | biostudies-literature
| S-EPMC10281333 | biostudies-literature
| S-EPMC9326814 | biostudies-literature
| S-EPMC8187505 | biostudies-literature
| S-EPMC10161083 | biostudies-literature