Project description:ObjectiveHealthcare workers in the emergency department are particularly vulnerable to communicable disease. This study aimed to evaluate compliance with standard precautions by analysis of the incidence and systems sources of such contaminations and by quantifying the use of personal protective equipment.MethodA prospective observational study from 1 November 2005 to 30 April 2006, using analysis of video segments. Videotapes were recorded in two rooms designed for cardiopulmonary resuscitation of out-of-hospital cardiac arrests, and compliance with basic infection control measures by all emergency department crews was monitored.ResultsA total of 44 consecutive performances of cardiopulmonary resuscitation were recorded for time-motion analysis. The percentages of staff wearing personal protective equipment were 90%, 50%, 20% and 75% for masks, eye protection, gowns and gloves, respectively. Compliance ranking scored doctors as high, trainees as moderate and nursing staff as low. Overall contamination rate was 16.9x10(-2) events/person-min. The two leading systems sources for contamination were lack of specific task assignments among rescuers (44%) and inadequate preparation for procedures (42%).ConclusionsAmong healthcare workers in the emergency setting, the study disclosed suboptimal compliance with basic infection control measures, including use of personal protective equipment and avoiding contamination. By further time-motion analysis of resuscitation sessions, major systems sources and strategies for improvement could be identified.
Project description:Approximately, 10-20% of newborns require breathing assistance at birth, which remains the cornerstone of neonatal resuscitation. Fortunately, the need for chest compression (CC) or medications in the delivery room (DR) is rare. About 0.1% of term infants and up to 15% of preterm infants receive these interventions, this will result in approximately one million newborn deaths annually worldwide. In addition, CC or medications (epinephrine) are more frequent in the preterm population (~15%) due to birth asphyxia. A recent study reported that only 6 per 10,000 infants received epinephrine in the DR. Further, the study reported that infants receiving epinephrine during resuscitation had a high incidence of mortality (41%) and short-term neurologic morbidity (57% hypoxic-ischemic encephalopathy and seizures). A recent review of newborns who received prolonged CC and epinephrine but had no signs of life at 10?min following birth noted 83% mortality, with 93% of survivors suffering moderate-to-severe disability. The poor prognosis associated with receiving CC alone or with medications in the DR raises questions as to whether improved cardiopulmonary resuscitation methods specifically tailored to the newborn could improve outcomes.
Project description:ObjectivesDuring the outbreak of the Middle East Respiratory Syndrome (MERS) in Korea in 2015, the Korea Centers for Disease Control and Prevention (KCDC) confirmed a case of MERS in a healthcare worker in Daejeon, South Korea. To verify the precise route of infection for the case, we conducted an in-depth epidemiological investigation in cooperation with the KCDC.MethodsWe reviewed the MERS outbreak investigation report of the KCDC, and interviewed the healthcare worker who had recovered from MERS. Using the media interview data, we reaffirmed and supplemented the nature of the exposure.ResultsThe healthcare worker, a nurse, was infected while performing cardiopulmonary resuscitation (CPR) for a MERS patient in an isolation room. During the CPR which lasted for an hour, a large amount of body fluid was splashed. The nurse was presumed to have touched the mask to adjust its position during the CPR. She suggested that she was contaminated with the MERS patient's body fluids by wiping away the sweat from her face during the CPR.ConclusionsThe possible routes of infection may include the following: respiratory invasion of aerosols contaminated with MERS-coronavirus (MERS-CoV) through a gap between the face and mask; mucosal exposure to sweat contaminated with MERS-CoV; and contamination during doffing of personal protective equipment. The MERS guidelines should reflect this case to decrease the risk of infection during CPR.
Project description:After cardiac arrest a combination of basic and advanced airway and ventilation techniques are used during cardiopulmonary resuscitation (CPR) and after a return of spontaneous circulation (ROSC). The optimal combination of airway techniques, oxygenation and ventilation is uncertain. Current guidelines are based predominantly on evidence from observational studies and expert consensus; recent and ongoing randomised controlled trials should provide further information. This narrative review describes the current evidence, including the relative roles of basic and advanced (supraglottic airways and tracheal intubation) airways, oxygenation and ventilation targets during CPR and after ROSC in adults. Current evidence supports a stepwise approach to airway management based on patient factors, rescuer skills and the stage of resuscitation. During CPR, rescuers should provide the maximum feasible inspired oxygen and use waveform capnography once an advanced airway is in place. After ROSC, rescuers should titrate inspired oxygen and ventilation to achieve normal oxygen and carbon dioxide targets.
Project description:Prolonged cardiac arrest (CA) causes microvascular thrombosis which is a potential barrier to organ reperfusion during extracorporeal cardiopulmonary resuscitation (ECPR). The aim of this study was to test the hypothesis that early intra-arrest anticoagulation during cardiopulmonary resuscitation (CPR) and thrombolytic therapy during ECPR improve recovery of brain and heart function in a porcine model of prolonged out-of-hospital CA.DesignRandomized interventional trial.SettingUniversity laboratory.SubjectsSwine.InterventionsIn a blinded study, 48 swine were subjected to 8 minutes of ventricular fibrillation CA followed by 30 minutes of goal-directed CPR and 8 hours of ECPR. Animals were randomized into four groups (n = 12) and given either placebo (P) or argatroban (ARG; 350 mg/kg) at minute 12 of CA and either placebo (P) or streptokinase (STK, 1.5 MU) at the onset of ECPR.Measurements and main resultsPrimary outcomes included recovery of cardiac function measured by cardiac resuscitability score (CRS: range 0-6) and recovery of brain function measured by the recovery of somatosensory-evoked potential (SSEP) cortical response amplitude. There were no significant differences in recovery of cardiac function as measured by CRS between groups (p = 0.16): P + P 2.3 (1.0); ARG + P = 3.4 (2.1); P + STK = 1.6 (2.0); ARG + STK = 2.9 (2.1). There were no significant differences in the maximum recovery of SSEP cortical response relative to baseline between groups (p = 0.73): P + P = 23% (13%); ARG + P = 20% (13%); P + STK = 25% (14%); ARG + STK = 26% (13%). Histologic analysis demonstrated reduced myocardial necrosis and neurodegeneration in the ARG + STK group relative to the P + P group.ConclusionsIn this swine model of prolonged CA treated with ECPR, early intra-arrest anticoagulation during goal-directed CPR and thrombolytic therapy during ECPR did not improve initial recovery of heart and brain function but did reduce histologic evidence of ischemic injury. The impact of this therapeutic strategy on the long-term recovery of cardiovascular and neurological function requires further investigation.
Project description:AimTo evaluate pediatric cardiopulmonary resuscitation (CPR) quality during intra-hospital transport to facilitate extracorporeal membrane oxygenation (ECMO)-CPR (ECPR). We compared chest compression (CC) rate, depth, and fraction (CCF) between the pre-transport and intra-transport periods.MethodsObservational study of children <18 years with either in-hospital cardiac arrest (IHCA) or out-of-hospital cardiac arrest (OHCA) who underwent transport between two care locations within the hospital for ECPR and who had CPR mechanics data available. Descriptive patient and arrest characteristics were summarized. The primary analysis compared pre- to intra-transport CC rate, depth, and fraction. A secondary analysis compared the proportion of pre- versus intra-transport 60-s epochs meeting guideline recommendations for rate (100-120/min), depth (≥4 cm for infants; ≥5 cm for children ≥1 year), and CCF (≥0.80).ResultsSeven patients (four IHCA; three witnessed OHCA) met eligibility criteria. Six (86%) patients survived the event and two (28%) survived to hospital discharge. Median transport CPR duration was 7 [IQR 5.5, 8.5] minutes. There were no differences in pre- vs. intra-transport CC rate (115 [113, 118] vs. 118 [114, 127] CCs/minute; p = 0.18), depth (3.2 [2.7, 4.4] vs. 3.6 [2.5, 4.6] cm; p = 0.50), or CCF (0.89 [0.82, 0.90] vs. 0.92 [0.79, 0.97]; p = 0.31). Equivalent proportions of 60-s CPR epochs met guideline recommendations between pre- and intra-transport (rate: 66% vs. 57% [p = 0.22]; depth: 14% vs. 19% [p = 0.39]; CCF: 80% vs. 75% [p = 0.43]).ConclusionsPediatric CPR quality was maintained during intra-hospital patient transport, suggesting that it is reasonable for ECPR systems to incorporate patient transport to facilitate ECMO cannulation.
Project description:Feedback on chest compressions and ventilations during cardiopulmonary resuscitation (CPR) is important to improve survival from out-of-hospital cardiac arrest (OHCA). The thoracic impedance signal acquired by monitor-defibrillators during treatment can be used to provide feedback on ventilations, but chest compression components prevent accurate detection of ventilations. This study introduces the first method for accurate ventilation detection using the impedance while chest compressions are concurrently delivered by a mechanical CPR device. A total of 423 OHCA patients treated with mechanical CPR were included, 761 analysis intervals were selected which in total comprised 5 884 minutes and contained 34 864 ventilations. Ground truth ventilations were determined using the expired CO 2 channel. The method uses adaptive signal processing to obtain the impedance ventilation waveform. Then, 14 features were calculated from the ventilation waveform and fed to a random forest (RF) classifier to discriminate false positive detections from actual ventilations. The RF feature importance was used to determine the best feature subset for the classifier. The method was trained and tested using stratified 10-fold cross validation (CV) partitions. The training/test process was repeated 20 times to statistically characterize the results. The best ventilation detector had a median (interdecile range, IDR) F 1-score of 96.32 (96.26-96.37). When used to provide feedback in 1-min intervals, the median (IDR) error and relative error in ventilation rate were 0.002 (-0.334-0.572) min-1 and 0.05 (-3.71-9.08)%, respectively. An accurate ventilation detector during mechanical CPR was demonstrated. The algorithm could be introduced in current equipment for feedback on ventilation rate and quality, and it could contribute to improve OHCA survival rates.
Project description:Preventing the dispersion of virulent particles during aerosol generating procedures has never been more relevant than during the current coronavirus pandemic. The American Heart Association released interim guidelines to assist in limiting exposure during advanced cardiovascular life support. These include maintaining a closed circuit on the ventilator for intubated patients and to use a high-efficiency particulate air filter during airway management of nonintubated patients. We developed additional modifications to the suggested guidelines such that providers are even further protected from unnecessary aerosolization, and illustrate a sample protocol for provider safety during advanced cardiovascular life support in the coronavirus pandemic. For the intubated patient, our protocol maintains the patient to the ventilator in addition to being draped with a plastic barrier over the mouth and nares. In the nonintubated patient, a plastic drape or a non-rebreather mask is used to help reduce aerosolization during manual chest compressions. Our modified protocol allows providers to perform advanced cardiac life support by further minimizing exposure risk.
Project description:We aimed to investigate the impact of mechanical cardiopulmonary resuscitation devices over manual cardiopulmonary resuscitation on outcomes from inhospital cardiac arrests. Design:Restrospective review. Setting:Single academic medical center. Participants:Data were collected on all patients who suffered cardiac arrest from December 2015 to November 2019. Main Outcomes and Measures:Primary end point was return of spontaneous circulation. Secondary end points included survival to discharge and survival to discharge with favorable neurologic outcomes. Results:About 104 patients were included in the study: 59 patients received mechanical cardiopulmonary resuscitation and 45 patients received manual cardiopulmonary resuscitation during the enrollment period. Return of spontaneous circulation rate was 83% in the mechanical cardiopulmonary resuscitation group versus 48.8% in the manual group (p = 0.009). Survival-to-discharge rate was 32.2% in the mechanical cardiopulmonary resuscitation group versus 11.1% in those who received manual cardiopulmonary resuscitation (p = 0.02). Of the patients who survived to discharge and received mechanical cardiopulmonary resuscitation, 100% (n = 19) had a favorable neurologic outcome versus 40% (two out of five) of patients who survived and received manual cardiopulmonary resuscitation (p = 0.005). Conclusions:Our findings demonstrate a significant association of improved outcomes with mechanical cardiopulmonary resuscitation over manual cardiopulmonary resuscitation during inhospital cardiac arrests. Mechanical cardiopulmonary resuscitation may improve rates of return of spontaneous circulation, survival to discharge, and favorable neurologic outcomes.