Unknown

Dataset Information

0

Exercise Training Prevents Doxorubicin-induced Mitochondrial Dysfunction of the Liver.


ABSTRACT: PURPOSE:Doxorubicin (DOX) is a highly effective chemotherapeutic agent used in the treatment of a broad spectrum of cancers. However, clinical use of DOX is limited by irreversible and dose-dependent hepatotoxicity. The liver is the primary organ responsible for the clearance of antineoplastic agents, and evidence indicates that hepatotoxicity occurs as a result of impaired mitochondrial efficiency during DOX metabolism. In this regard, exercise training is sufficient to improve mitochondrial function and protect against DOX-induced cytotoxicity. Therefore, the purpose of this study was to determine whether short-term exercise preconditioning is sufficient to protect against DOX-induced liver mitochondrionopathy. METHODS:Female Sprague-Dawley rats (4-6 months old) were randomly assigned to one of four groups: 1) sedentary, treated with saline; 2) sedentary, treated with DOX; 3) exercise trained, treated with saline; and 4) exercise trained, treated with DOX. Exercise-trained animals underwent 5 d of treadmill running habituation followed by 10 d of running for 60 min·d (30 m·min; 0% grade). After the last training bout, exercise-trained and sedentary animals were injected with either DOX (20 mg·kg i.p.) or saline. Two days after drug treatment, the liver was removed and mitochondria were isolated. RESULTS:DOX treatment induced mitochondrial dysfunction of the liver in sedentary animals because of alterations in mitochondrial oxidative capacity, biogenesis, degradation, and protein acetylation. Furthermore, exercise preconditioning protected against DOX-mediated liver mitochondrionopathy, which was associated with the maintenance of mitochondrial oxidative capacity and protein acetylation. CONCLUSION:These findings demonstrate that endurance exercise training protects against DOX-induced liver mitochondrial dysfunction, which was attributed to modifications in organelle oxidative capacity and mitochondrial protein acetylation.

SUBMITTER: Hinkley JM 

PROVIDER: S-EPMC6522307 | biostudies-literature | 2019 Jun

REPOSITORIES: biostudies-literature

Similar Datasets

| S-EPMC7229599 | biostudies-literature
| S-EPMC6669320 | biostudies-literature
| S-EPMC8047409 | biostudies-literature
| S-EPMC7408828 | biostudies-literature
| S-EPMC8239231 | biostudies-literature
| S-EPMC6957384 | biostudies-literature
| S-EPMC4791226 | biostudies-literature
| S-EPMC11000183 | biostudies-literature
| S-EPMC7856030 | biostudies-literature
| S-EPMC4270160 | biostudies-literature