NIR-Triggered Phototherapy and Immunotherapy via an Antigen-Capturing Nanoplatform for Metastatic Cancer Treatment.
Ontology highlight
ABSTRACT: Combined phototherapy and immunotherapy demonstrates strong potential in the treatment of metastatic cancers. An upconversion nanoparticle (UCNP) based antigen-capturing nanoplatform is designed to synergize phototherapies and immunotherapy. In particular, this nanoplatform is constructed via self-assembly of DSPE-PEG-maleimide and indocyanine green (ICG) onto UCNPs, followed by loading of the photosensitizer rose bengal (RB). ICG significantly enhances the RB-based photodynamic therapy efficiency of UCNP/ICG/RB-mal upon activation by a near-infrared (NIR) laser, simultaneously achieving selective photothermal therapy. Most importantly, tumor-derived protein antigens, arising from phototherapy-treated tumor cells, can be captured and retained in situ, due to the functionality of maleimide, which further enhance the tumor antigen uptake and presentation by antigen-presenting cells. The synergized photothermal, photodynamic, and immunological effects using light-activated UCNP/ICG/RB-mal induces a tumor-specific immune response. In the experiments, intratumoral administration of UCNP/ICG/RB-mal, followed by noninvasive irradiation with an NIR laser, destroys primary tumors and inhibits untreated distant tumors, using a poorly immunogenic, highly metastatic 4T1 mammary tumor model. With the simultaneous use of anti-CTLA-4, about 84% of the treated tumor-bearing mice achieve long-term survival and 34% of mice develop tumor-specific immunity. Overall, this antigen-capturing nanoplatform provides a promising approach for the treatment of metastatic cancers.
SUBMITTER: Wang M
PROVIDER: S-EPMC6523374 | biostudies-literature | 2019 May
REPOSITORIES: biostudies-literature
ACCESS DATA