Unknown

Dataset Information

0

Anticancer effects of a non-narcotic opium alkaloid medicine, papaverine, in human glioblastoma cells.


ABSTRACT: The interaction between high-mobility group box 1 protein (HMGB1) and receptor for advanced glycation end products (RAGE) is important for tumor cell growth. We investigated the tumor biological effects of HMGB1 and RAGE interaction. Previously, we identified an inhibitor of HMGB1/RAGE interaction, papaverine (a non-narcotic opium alkaloid), using a unique drug design system and drug repositioning approach. In the present study, we examined the anticancer effects of papaverine in human glioblastoma (GBM) temozolomide (TMZ; as a first-line anticancer medicine)-sensitive U87MG and TMZ-resistant T98G cells. HMGB1 supplementation in the culture medium promoted tumor cell growth in T98G cells, and this effect was canceled by papaverine. In addition, papaverine in T98G cells suppressed cancer cell migration. As an HMGB1/RAGE inhibitor, papaverine also significantly inhibited cell proliferation in U87MG and T98G cells. The effects of papaverine were evaluated in vivo in a U87MG xenograft mouse model by determining tumor growth delay. The results indicate that papaverine, a smooth muscle relaxant, is a potential anticancer drug that may be useful in GBM chemotherapy.

SUBMITTER: Inada M 

PROVIDER: S-EPMC6524804 | biostudies-literature | 2019

REPOSITORIES: biostudies-literature

altmetric image

Publications

Anticancer effects of a non-narcotic opium alkaloid medicine, papaverine, in human glioblastoma cells.

Inada Mana M   Shindo Mika M   Kobayashi Kyousuke K   Sato Akira A   Yamamoto Yohei Y   Akasaki Yasuharu Y   Ichimura Koichi K   Tanuma Sei-Ichi SI  

PloS one 20190517 5


The interaction between high-mobility group box 1 protein (HMGB1) and receptor for advanced glycation end products (RAGE) is important for tumor cell growth. We investigated the tumor biological effects of HMGB1 and RAGE interaction. Previously, we identified an inhibitor of HMGB1/RAGE interaction, papaverine (a non-narcotic opium alkaloid), using a unique drug design system and drug repositioning approach. In the present study, we examined the anticancer effects of papaverine in human glioblast  ...[more]

Similar Datasets

2014-02-21 | GSE55196 | GEO
2014-02-21 | E-GEOD-55196 | biostudies-arrayexpress
2014-12-15 | GSE62716 | GEO
2014-12-15 | E-GEOD-62716 | biostudies-arrayexpress
| S-EPMC7699950 | biostudies-literature
| S-EPMC3522292 | biostudies-literature
| S-EPMC7055283 | biostudies-literature
| S-EPMC7998496 | biostudies-literature
| S-EPMC7921416 | biostudies-literature
2008-12-31 | GSE9315 | GEO