Unknown

Dataset Information

0

Killer Meiotic Drive and Dynamic Evolution of the wtf Gene Family.


ABSTRACT: Natural selection works best when the two alleles in a diploid organism are transmitted to offspring at equal frequencies. Despite this, selfish loci known as meiotic drivers that bias their own transmission into gametes are found throughout eukaryotes. Drive is thought to be a powerful evolutionary force, but empirical evolutionary analyses of drive systems are limited by low numbers of identified meiotic drive genes. Here, we analyze the evolution of the wtf gene family of Schizosaccharomyces pombe that contains both killer meiotic drive genes and suppressors of drive. We completed assemblies of all wtf genes for two S. pombe isolates, as well as a subset of wtf genes from over 50 isolates. We find that wtf copy number can vary greatly between isolates and that amino acid substitutions, expansions and contractions of DNA sequence repeats, and nonallelic gene conversion between family members all contribute to dynamic wtf gene evolution. This work demonstrates the power of meiotic drive to foster rapid evolution and identifies a recombination mechanism through which transposons can indirectly mobilize meiotic drivers.

SUBMITTER: Eickbush MT 

PROVIDER: S-EPMC6526906 | biostudies-literature | 2019 Jun

REPOSITORIES: biostudies-literature

altmetric image

Publications

Killer Meiotic Drive and Dynamic Evolution of the wtf Gene Family.

Eickbush Michael T MT   Young Janet M JM   Zanders Sarah E SE  

Molecular biology and evolution 20190601 6


Natural selection works best when the two alleles in a diploid organism are transmitted to offspring at equal frequencies. Despite this, selfish loci known as meiotic drivers that bias their own transmission into gametes are found throughout eukaryotes. Drive is thought to be a powerful evolutionary force, but empirical evolutionary analyses of drive systems are limited by low numbers of identified meiotic drive genes. Here, we analyze the evolution of the wtf gene family of Schizosaccharomyces  ...[more]

Similar Datasets

| S-EPMC9562144 | biostudies-literature
| S-EPMC3409728 | biostudies-literature
| S-EPMC9762604 | biostudies-literature
| S-EPMC5478261 | biostudies-literature
| S-EPMC3690210 | biostudies-literature
| S-EPMC6590138 | biostudies-literature
| S-EPMC4280042 | biostudies-literature
| S-EPMC7689494 | biostudies-literature
| S-EPMC4232701 | biostudies-literature
| S-EPMC7032740 | biostudies-literature