KDM1A regulated the osteo/dentinogenic differentiation process of the stem cells of the apical papilla via binding with PLOD2.
Ontology highlight
ABSTRACT: OBJECTIVES:Dental tissue-derived mesenchymal stem cells (MSCs)-mediated pulp-dentin regeneration is considered a potential approach for the regeneration of damaged teeth. Enhancing MSC-mediated pulp-dentin regeneration is based on an understanding of the molecular mechanisms underlying directed cell differentiation process. Histone demethylation enzyme, lysine demethylase 1A (KDM1A) can regulate the differentiation of some MSCs, but its role in dental tissue-derived MSCs is unclear. MATERIAL AND METHODS:We obtained SCAPs from immature teeth. Alkaline phosphatase (ALP) activity assay, Alizarin red staining, quantitative calcium analysis, osteogenesis-related genes expression and in vivo transplantation experiment were used to explore the osteo/dentinogenic differentiation. Co-immunoprecipitation (Co-IP) assay was used to investigate the binding protein. RESULTS:Knock-down of KDM1A reduced ALP activity and mineralization, promoted the expressions of osteo/dentinogenic differentiation markers DSPP, DMP1, BSP and key transcript factors, RUNX2, OSX, DLX2 in SCAPs, and also enhanced the osteo/dentinogenesis in vivo. In addition, KDM1A could associate with PLOD2 to form protein complex. And knock-down of PLOD2 inhibited ALP activity and mineralization, and promoted the expressions of DSPP, DMP1, BSP, RUNX2, OSX and DLX2 in SCAPs. CONCLUSIONS:KDM1A might have different role in different stages of osteo/dentinogenic differentiation process by binding partner with PLOD2, and finally resulted in the inhibited function for the osteo/dentinogenesis in SCAPs. Our studies provided a further understanding of the regulatory mechanisms of dynamic osteo/dentinogenic differentiation process in dental tissue MSCs.
SUBMITTER: Wang L
PROVIDER: S-EPMC6528894 | biostudies-literature | 2018 Aug
REPOSITORIES: biostudies-literature
ACCESS DATA