Alkaline Ceramidase Mediates the Oxidative Stress Response in Drosophila melanogaster Through Sphingosine.
Ontology highlight
ABSTRACT: Alkaline ceramidase (Dacer) in Drosophila melanogaster was demonstrated to be resistant to paraquat-induced oxidative stress. However, the underlying mechanism for this resistance remained unclear. Here, we showed that sphingosine feeding triggered the accumulation of hydrogen peroxide (H2O2). Dacer-deficient D. melanogaster (Dacer mutant) has higher catalase (CAT) activity and CAT transcription level, leading to higher resistance to oxidative stress induced by paraquat. By performing a quantitative proteomic analysis, we identified 79 differentially expressed proteins in comparing Dacer mutant to wild type. Three oxidoreductases, including two cytochrome P450 (CG3050, CG9438) and an oxoglutarate/iron-dependent dioxygenase (CG17807), were most significantly upregulated in Dacer mutant. We presumed that altered antioxidative activity in Dacer mutant might be responsible for increased oxidative stress resistance. Our work provides a novel insight into the oxidative antistress response in D. melanogaster.
SUBMITTER: Zhang CH
PROVIDER: S-EPMC6529914 | biostudies-literature |
REPOSITORIES: biostudies-literature
ACCESS DATA